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WEAK AND STRONG FORM OF
g̃-IRRESOLUTE FUNCTIONS

S. Jafari and N. Rajesh

Abstract

The purpose of this paper is to give two new types of irresolute func-
tions called, completely g̃-irresolute functions and weakly g̃-irresolute
functions. We obtain theirs characterizations and theirs basic proper-
ties.

1 Introduction and Preliminaries

Functions and of course irresolute functions stand among the most impor-
tant and most researched points in the whole of mathematical science. In
1972, Crossley and Hildebrand [3] introduced the notion of irresoluteness.
Many different forms of irresolute functions have been introduced over the
years. Various interesting problems arise when one considers irresoluteness.
Its importance is significant in various areas of mathematics and related
sciences.

Recently, as generalization of closed sets, the notion of g̃-closed sets were in-
troduced and studied by Jafari et al [8]. This notion was further studied by
Rajesh and Ekici [18, 16, 15, 17]. In this paper, we will continue the study of
related irresolute functions with g̃-open sets. We introduce and character-
ize the concepts of completely g̃-irresolute and weakly g̃-irresolute functions.

Throughout this paper, spaces means topological spaces on which no separa-
tion axioms are assumed unless otherwise mentioned and f : (X, τ) → (Y, σ)
(or simply f : X → Y ) denotes a function f of a space (X, τ) into a space
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(Y, σ). Let A be a subset of a space X. The closure and the interior of A
are denoted by Cl(A) and Int(A), respectively.

Definition 1.1. A subset A of a space (X, τ) is called semi-open [9] (resp.
regular open [22]) if A ⊂ Cl(Int(A)) (resp. A = Int(Cl(A))). The com-
plement of semi-open (resp. regular open) set is called semi-closed (resp.
regular closed). The family of all regular open (resp. regular closed) subsets
of (X, τ) is denoted by RO(X) (resp. RC(X)).

The semi-closure [4] of a subset A of X, denoted by sCl(A) is defined
to be the intersection of all semi-closed sets containing A in X.

Definition 1.2. A subset A of a space X is called:

(i) ĝ-closed [25] if Cl(A) ⊂ U whenever A ⊂ U and U is semi-open in X.
The complement of ĝ-closed set is called ĝ-open.

(ii) ∗g-closed [24] if Cl(A) ⊂ U whenever A ⊂ U and U is ĝ-open in X.
The complement of ∗g-closed set is called ∗g-open.

(iii) #g-semi-closed [26] if sCl(A) ⊂ U whenever A ⊂ U and U is ∗g-open
in X. The complement of #g-semi-closed is called #g-semi-open.

(iv) g̃-closed [8] if Cl(A) ⊂ U whenever A ⊂ U and U is #g-semi-open in
X. The complement of g̃-closed set is called g̃-open.

The family of all g̃-open subsets of (X, τ) is denoted by G̃O(X). We set
G̃O(X, x) = {V ∈ G̃O(X)|x ∈ V } for x ∈ X.

The union (resp. intersection) of all g̃-open (resp. g̃-closed) sets, each
contained in (resp. containing) a set A in a space X is called the g̃-interior
(resp. g̃-closure) of A and is denoted by g̃-Int(A) (resp. g̃-Cl(A)) [15].

Note that the family of g̃-open subsets of (X, τ) forms a topology [8].

Definition 1.3. A function f : (X, τ) → (Y, σ) is called:

(i) strongly continuous [10] (resp. strongly g̃-continuous [20]) if f−1(V )
is both open (resp. g̃-open) and closed (resp. g̃-closed) in X for each
subset V of Y ;

(ii) completely continuous [1] if f−1(V ) is regular open in X for every
open set V of X;

(iii) g̃-irresolute [18] if f−1(V ) is g̃-closed (resp. g̃-open) in X for every
g̃-closed (resp. g̃-open) subset V of Y .
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2 Completely g̃-irresolute functions

Definition 2.1. A function f : X → Y is called completely g̃-irresolute if
the inverse image of each g̃-open subset of Y is regular open in X.

Clearly, every strongly continuous function is completely g̃-irresolute and
every completely g̃-irresolute function is g̃-irresolute.

Remark 2.2. The converses of the above implications are not true in gen-
eral as seen from the following examples.

Example 2.3. Let X = {a, b, c} = Y , τ = {∅, {a}, {b, c}, X} and σ =
{∅, {a}, Y }. Clearly, the identity function f : (X, τ) → (Y, σ) is completely
g̃-irresolute but not strongly continuous.

Example 2.4. Let X = {a, b, c} = Y , τ = {∅, {a, b}, X} and σ = {∅, {a}, {a, b}, Y }.
Then the identity function f : (X, τ) → (Y, σ) is g̃-irresolute but not com-
pletely g̃-irresolute.

Theorem 2.5. The following statements are equivalent for a function f :
X → Y

(i) f is completely g̃-irresolute;

(ii) f : (X, τ) → (Y, G̃O(X)) is completely continuous;

(iii) f−1(F ) is regular closed in X for every g̃-closed set F of Y .

Proof. (i)⇔(ii): Follows from the definitions. (i)⇔(iii): Let F be any g̃-
closed set of Y . Then Y \ F ∈ G̃O(Y ). By (i), f−1(Y \F ) = X \ f−1(F ) ∈
RO(X). We have f−1(F ) ∈ RC(X).
Converse is similar.

Lemma 2.6. [11] Let S be an open subset of a space (X, τ). Then the
following hold:

(i) If U is regular open in X, then so is U ∩ S in the subspace (S, τs).

(ii) If B ⊂ S is regular open in (S, τs), then there exists a regular open set
U in (X, τ) such that B = U ∩ S.

Theorem 2.7. If f : (X, τ) → (Y, σ) is a completely g̃-irresolute function
and A is any open subset of X, then the restriction f |A: A → Y is completely
g̃-irresolute.
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Proof. Let F be a g̃-open subset of Y . By hypothesis f−1(F ) is regular
open in X. Since A is open in X, it follows from the previous Lemma that
(f |A)−1(F ) = A ∩ f−1(F ), which is regular open in A. Therefore, f |A is
completely g̃-irresolute.

Theorem 2.8. The following hold for functions f : (X, τ) → (Y, σ) and
g : (Y, σ) → (Z, η):

(i) If f is completely g̃-irresolute and g is strongly g̃-continuous, then g◦f
is completely continuous;

(ii) If f is completely g̃-irresolute and g is g̃-irresolute, then g ◦ f is com-
pletely g̃-irresolute;

(iii) If f is completely continuous and g is completely g̃-irresolute functions,
then g ◦ f is completely g̃-irresolute function.

Proof. The proof of the theorem is easy and hence omitted.

Definition 2.9. A space X is said to be almost connected [6] (resp. g̃-
connected [16]) if there does not exist disjoint regular open (resp. g̃-open)
sets A and B such that A ∪B = X.

Theorem 2.10. If f : (X, τ) → (Y, σ) is completely g̃-irresolute surjective
function and X is almost connected, then Y is g̃-connected.

Proof. Suppose that Y is not g̃-connected. Then there exist disjoint g̃-open
sets A and B of Y such that A ∪ B = X. Since f is completely g̃-irresolute
surjective, f−1(A) and f−1(B) are regular open sets in X. Moreover, f−1(A)
∪ f−1(B) = X, f−1(A) 6= ∅ and f−1(B) 6= ∅. This shows that X is not
almost connected, which is a contradiction to the assumption that X is
almost connected. By contradiction, Y is g̃-connected.

Definition 2.11. A space X is said to be

(i) nearly compact [13, 21] if every regular open cover of X has a finite
subcover;

(ii) nearly countably compact [7] if every countable cover by regular open
sets has a finite subcover;

(iii) nearly Lindelof [6] if every cover of X by regular open sets has a count-
able subcover;

(iv) g̃-compact [16] if every g̃-open cover of X has a finite subcover;
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(v) countably g̃-compact [14] if every g̃-open countable cover of X has a
finite subcover;

(vi) g̃-Lindelof [14] if every cover of X by g̃-open sets has a countable
subcover.

Theorem 2.12. Let f : (X, τ) → (Y, σ) be a completely g̃-irresolute surjec-
tive function. Then the following statements hold:

(i) If X is nearly compact, then Y is g̃-compact.

(ii) If X is nearly Lindelof, then Y is g̃-Lindelof.

(i) If X is nearly countably compact, then Y is countably g̃-compact.

Proof. (i) Let f : X → Y be a completely g̃-irresolute function of nearly
compact space X onto a space Y . Let {Uα : α ∈ 4} be any g̃-open cover
of Y . Then, {f−1(Uα) : α ∈ 4} is a regular open cover of X. Since X
is nearly compact, there exists a finite subfamily, {f−1(Uαi)|i = 1, 2, ...n}
of {f−1(Uα) : α ∈ 4} which cover X. It follows that {Uαi : i = 1, 2, ...n}
is a finite subfamily of {Uα : α ∈ 4} which cover Y . Hence, space Y is a
g̃-compact space.
The proof of other cases are similar.

Definition 2.13. A space (X, τ) is said to be:

(i) S-closed [23] (resp. g̃-closed compact [14]) if every regular closed (resp.
g̃-closed) cover of X has a finite subcover;

(ii) countably S-closed-compact [5] (resp. countably g̃-closed compact [14])
if every countable cover of X by regular closed (resp. g̃-closed) sets has
a finite subcover;

(iii) S-Lindelof [12] (resp. g̃-closed Lindelof [14]) if every cover of X by
regular closed (resp. g̃-closed) sets has a countable subcover.

Theorem 2.14. Let f : (X, τ) → (Y, σ) be a completely g̃-irresolute surjec-
tive function. Then the following statements hold:

(i) If X is S-closed, then Y is g̃-closed compact.

(ii) If X is S-Lindelof, then Y is g̃-closed Lindelof.

(iii) If X is countably S-closed-compact, then Y is countably g̃-closed com-
pact.
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Proof. It can be obtained similarly as the previous Theorem.

Definition 2.15. A space X is said to be strongly g̃-normal (resp. mildly
g̃-normal) if for each pair of distinct g̃-closed (resp. regular closed) sets A
and B of X, there exist disjoint g̃-open sets U and V such that A ⊂ U and
B ⊂ V .

It is evident that every strongly g̃-normal space is mildly g̃-normal.
Recall that a function f : X → Y is called g̃∗-closed [2] if the image of

each g̃-closed set of X is a g̃-closed set in Y .
In [2], the following theorem is proved.

Theorem 2.16. If a mapping f : X → Y is g̃∗-closed, then for each subset
B of Y and each g̃-open set U of X containing f−1(B), there exists a g̃-open
set V in Y containing B such that f−1(V ) ⊂ U .

Theorem 2.17. If f : X → Y is completely g̃-irresolute, g̃∗-closed function
from a mildly g̃-normal space X onto a space Y , then Y is strongly g̃-normal.

Proof. Let A and B be two disjoint g̃-closed subsets of Y . Then, f−1(A)
and f−1(B) are disjoint regular closed subsets of X. Since X is mildly
g̃-normal space, there exist disjoint g̃-open sets U and V in X such that
f−1(A) ⊂ U and f−1(B) ⊂ V . Then by Theorem 2.16, there exist g̃-open
sets G = Y \f(X\U) and H = Y \f(X\V ) such that A ⊂ G, f−1(G) ⊂ U ;
B ⊂ H, f−1(H) ⊂ V . Clearly, G and H are disjoint g̃-open subsets of Y .
Hence, Y is strongly g̃-normal.

Now, we define the following.

Definition 2.18. A space X is said to be strongly g̃-regular if for each g̃-
closed set F and each point x /∈ F , there exists disjoint g̃-open sets U and
V in X such that x ∈ U and F ⊂ V .

Definition 2.19. A space X is called almost g̃-regular if for each regular
closed subset F and every point x /∈ F , there exist disjoint g̃-open sets U
and V such that x ∈ U and F ⊂ V .

Theorem 2.20. If f is a completely g̃-irresolute, g̃∗-closed injection of an
almost g̃-regular space X onto a space Y , then Y is strongly g̃-regular space.

Proof. Let F be a g̃-closed subset of Y and let y /∈ F . Then, f−1(F ) is
regular closed subset of X such that f−1(y) = x /∈ f−1(F ). Since X is
almost g̃-regular space, there exists disjoint g̃-open sets U and V in X such
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that f−1(y) ∈ U and f−1(F ) ⊂ V . By Theorem 2.16, there exist g̃-open sets
G = Y \f(X\U) such that f−1(G) ⊂ U , y ∈ G and H = Y \f(X\V ) such
that f−1(H) ⊂ V , F ⊂ H. Clearly, G and H are disjoint g̃-open subsets of
Y . Hence, Y is strongly g̃-regular space.

Definition 2.21. A space (X, τ) is said to be g̃-T1 [19] (resp. r-T1 [6]) if for
each pair of distinct points x and y of X, there exist g̃-open (resp. regular
open) sets U1 and U2 such that x ∈ U1 and y ∈ U2, x /∈ U2 and y /∈ U1.

Theorem 2.22. If f : (X, τ) → (Y, σ) is completely g̃-irresolute injective
function and Y is g̃-T1, then X is r-T1.

Proof. Suppose that Y is g̃-T1. For any two distinct points x and y of
X, there exist g̃-open sets F1 and F2 in Y such that f(x) ∈ F1, f(y) ∈
F2, f(x) /∈ F2 and f(y) /∈ F1. Since f is injective completely g̃-irresolute
function, we have X is r-T1.

Definition 2.23. A space (X, τ) is said to be g̃-T2 [19] for each pair of
distinct points x and y in X, there exist disjoint g̃-open sets A and B in X
such that x ∈ A and y ∈ B.

Theorem 2.24. If f : (X, τ) → (Y, σ) is completely g̃-irresolute injective
function and Y is g̃-T2, then X is T2.

Proof. Similar to the proof of Theorem 2.22.

3 Weakly g̃-irresolute functions

Definition 3.1. A function f : X → Y is said to be weakly g̃-irresolute if for
each point x ∈ X and each V ∈ G̃O(Y, f(x)), there exists a U ∈ G̃O(X,x)
such that f(U) ⊂ g̃-Cl(V ).

It is evident that every g̃-irresolute function is weakly g̃-irresolute but
the converse is not true.

Example 3.2. Let X = Y = {a, b, c} with topologies τ = {∅, {a}, {b, c}, X}
and σ = {∅, {a}, Y }. Define a function f : (X, τ) → (Y, σ) by f(a) = b,
f(b) = a and f(c) = c. Clearly, f is weakly g̃-irresolute but not g̃-irresolute.

Theorem 3.3. For a function f : X → Y , the following statements are
equivalent:

(i) f is weakly g̃-irresolute;
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(ii) f−1(V ) ⊂ g̃-Int(f−1(g̃-Cl(V ))) for every V ∈ G̃O(Y );

(iii) g̃-Cl(f−1(V )) ⊂ f−1(g̃-Cl(V )) for every V ∈ G̃O(Y ).

Proof. (i)⇒(ii): Suppose that V ∈ G̃O(Y ) and let x ∈ f−1(V ). It follows
from (i) that f(U) ⊂ g̃-Cl(V ) for some U ∈ G̃O(X, x). Therefore, we have
U ⊂ f−1(g̃-Cl(V )) and x ∈ U ⊂ g̃-Int(f−1(g̃-Cl(V ))). This shows that
f−1(V ) ⊂ g̃-Int(f−1(g̃-Cl(V ))).
(ii)⇒(iii): Suppose that V ∈ G̃O(Y ) and x /∈ f−1(g̃-Cl(V )). Then f(x)
/∈ g̃-Cl(V ). There exists G ∈ G̃O(Y, f(x)) such that G ∩ V = ∅. Since
V ∈ G̃O(Y ), we have g̃-Cl(G) ∩ V = ∅ and hence g̃-Int(f−1(g̃-Cl(G))) ∩
f−1(V ) = ∅. By (ii), we have x ∈ f−1(G) ⊂ g̃-Int(f−1(g̃-Cl(G))) ∈ G̃O(X).
Therefore, we obtain x /∈ g̃-Cl(f−1(V )). This shows that g̃-Cl(f−1(V )) ⊂
f−1(g̃-Cl(V )).
(iii)⇒(i): Let x ∈ X and V ∈ G̃O(Y, f(x)). Then, x /∈ f−1(g̃-Cl(Y − g̃-
Cl(V ))). Since Y − g̃-Cl(V ) ∈ G̃O(Y ), by (iii), we have x /∈ g̃-Cl(f−1(Y − g̃-
Cl(V ))). Hence there exists U ∈ G̃O(X, x) such that U ∩ f−1(Y − g̃-Cl(V ))
= ∅. Therefore, we obtain f(U)∩ (Y − g̃-Cl(V )) = ∅ and hence f(U) ⊂ g̃-
Cl(V ). This shows that f is weakly g̃-irresolute.

Theorem 3.4. A function f : X → Y is weakly g̃-irresolute if the graph
function, defined by g(x) = (x, f(x)) for each x ∈ X, is weakly g̃-irresolute.

Proof. Let x ∈ X and V ∈ G̃O(Y, f(x)). Then X×V is a g̃-open set of X×Y
containing g(x). Since g is weakly g̃-irresolute, there exists U ∈ G̃O(X, x)
such that g(U) ⊂ g̃-Cl(X × V ) ⊂ X × g̃-Cl(V ). Therefore, we have f(U) ⊂
g̃-Cl(V ).

Theorem 3.5. [19] A space X is g̃-T2 if and only if for any pair of distinct
points x, y of X there exists g̃-open sets U and V such that x ∈ U , and
y ∈ V and g̃-Cl(U) ∩ g̃-Cl(V ) = ∅.

Theorem 3.6. If Y is a g̃-T2 space and f : X → Y is a weakly g̃-irresolute
injection, then X is g̃-T2.

Proof. Let x, y be any two distinct points of X. Since f is injective, we have
f(x) 6= f(y). Since Y is g̃-T2, by Theorem 3.5 there exists V ∈ G̃O(Y, f(x))
and W ∈ G̃O(Y, f(y)) such that g̃-Cl(V )∩ g̃-Cl(W ) = ∅. Since f is weakly
g̃-irresolute, there exists G ∈ G̃O(X,x) and H ∈ G̃O(X, y) such that f(G) ⊂
g̃-Cl(V ) and f(H) ⊂ g̃-Cl(W ). Hence we obtain G ∩ H = ∅. This shows
that X is g̃-T2.
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Definition 3.7. A function f : X → Y is said to have a strongly g̃-closed
graph if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ G̃O(X,x) and
V ∈ G̃O(Y, y) such that (g̃-Cl(U)× g̃-Cl(V )) ∩ G(f) = ∅.

Theorem 3.8. If Y is a g̃-T2 space and f : X → Y is weakly g̃-irresolute,
then G(f) is strongly g̃-closed.

Proof. Let (x, y) ∈ (X × Y )\G(f). Then y 6= f(x) and by Theorem 3.5
there exists V ∈ G̃O(Y, f(x)) and W ∈ G̃O(Y, y) such that g̃-Cl(V ) ∩ g̃-
Cl(W ) = ∅. Since f is weakly g̃-irresolute, there exists U ∈ G̃O(X, x) such
that f(g̃-Cl(U)) ⊂ g̃-Cl(V ). Therefore, we obtain f(g̃-Cl(V )) ∩ g̃-Cl(W ) =
∅ and hence (g̃-Cl(U) × g̃-Cl(W )) ∩ G(f) = ∅. This shows that G(f) is
strongly g̃-closed in X × Y .

Theorem 3.9. If a function f : X → Y is weakly g̃-irresolute, injective and
G(f) is strongly g̃-closed, then X is g̃-T2.

Proof. Let x, y be a pair of distinct points of X. Since f is injective, f(x) 6=
f(y) and (x, f(y)) /∈ G(f). Since G(f) is strongly g̃-closed there exists
G ∈ G̃O(X, x) and V ∈ G̃O(Y, f(y)) such that f(g̃-Cl(G)) ∩ g̃-Cl(V ) =
∅. Since f is weakly g̃-irresolute, there exists H ∈ G̃O(X, y) such that
f(H) ⊂ g̃-Cl(V ). Hence we have f(g̃-Cl(G)) ∩ f(H) = ∅; hence G ∩H =
∅. This shows that X is g̃-T2.

Recall that a topological space X is said to be g̃-connected [16] if it
cannot be written as the union of two nonempty disjoint g̃-open sets.

Theorem 3.10. If a function f : X → Y is a weakly g̃-irresolute surjection
and X is g̃-connected, then Y is g̃-connected.

Proof. Suppose that Y is not g̃-connected. There exist nonempty g̃-open sets
V and W of Y such that V ∪W = Y and V ∩W = ∅. Since f is weakly g̃-
irresolute f−1(V ), f−1(W ) ∈ G̃O(X). Moreover, we have f−1(V ) ∪ f−1(W )
= X, f−1(V )∩f−1(W ) = ∅, and f−1(V ) and f−1(W ) are nonempty. There-
fore, X is not g̃-connected.
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