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A COMMON FIXED POINT THEOREM
USING IMPLICIT RELATION

AND PROPERTY (E.A) IN METRIC SPACES

H. K. Pathak, RosanaRodŕıguez-López and R. K. Verma

Abstract

In this paper, we prove a common fixed point theorem for a quadru-
ple of mappings by using an implicit relation [6] and property (E.A)
[1] under weak compatibility.Our theorem improves and generalizes the
main Theorems of Popa [6] and Aamri and Moutawakil [1].Various ex-
amples verify the importance of weak compatibility and property (E.A)
in the existence of common fixed point and examples are also given to
the implicit relation and to validate our main Theorem. We also show
that property (E.A) and Meir-Keeler type contractive condition are
independent to each other.

1. Introduction
The concept of weakly commuting mappings of Sessa [7] is sharpened by
Jungck [3] and further generalized by Jungck and Rhoades [4]. Similarly,
noncompatible mapping is generalized by Aamri and Moutawakil [1] called
property (E.A). Noncompatibility is also important to study the fixed point
theory. There may be pairs of mappings which are noncompatible but weakly
compatible (see Example 1 of Popa [6] p. 34, and Example 2.1below).

Let A and S be two self-maps of a metric space (X, d). Mappings A and
S are said to be weakly commuting[7] if

d(SAx, ASx) ≤ d(Ax, Sx), for all x ∈ X, (1.1)
compatible [3] if

limn→∞d(ASxn, SAxn) = 0, (1.2)
whenever there exists a sequence {xn} in X such that limn→∞Axn =
limn→∞Sxn = t, for some t ∈ X.
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noncompatible if there exists a sequence{xn} in X such that limn→∞Axn =
limn→∞Sxn = t, for some t ∈ X and

limn→∞d(ASxn, SAxn) is either nonzero or nonexistent, (1.3)
and weakly compatible if they commute at their coincidence points, i.e.,

ASu = SAu whenever Au = Su, for some u ∈ X. (1.4)

2. Preliminaries

Property (E.A) [1]. Let A and S be two self-maps of a metric space (X, d)
then they are said to satisfy property (E.A), if there exists a sequence {xn}
in X such that

limn→∞Axn = limn→∞Sxn = t, for some t ∈ X. (2.1)
Notice that weakly compatible and property (E.A) are independent to each
other:
Example 2.1. Consider X = [0, 1] equipped with the usual metric d. De-
fine f, g : X → X by:

f(x) = 1− x, if x ∈ [0, 1
2 ] and f(x) = 0, if x ∈ (1

2 , 1],

g(x) = 1
2 , if x ∈ [0, 1

2 ] and g(x) = 3
4 , if x ∈ (1

2 , 1].
Then, for the sequence {xn} = {1

2 − 1
n}, n ≥ 2, we have

limn→∞f(1
2 − 1

n) = limn→∞ 1
2 + 1

n = 1
2 = limn→∞g(1

2 − 1
n). Thus, the

pair (f, g) satisfies property (E.A). Further, f and g are weakly compatible
since x = 1

2 is their unique coincidence point and fg(1/2) = f(1/2) =
g(1/2) = gf(1/2). We further observe that limn→∞d(fg(1

2 − 1
n), gf(1

2 −
1
n)) = limn→∞d(f(1

2), g(1
2 + 1

n)) = d(1
2 , 3

4) 6= 0,showing that the pair (f, g)
is noncompatible.
Example 2.2. Let X = R+ and d be the usual metric on X. Define
f, g : X → X by:

fx = 0, if 0 < x ≤ 1 and fx = 1, if x > 1 or x = 0; and
gx = [x], the greatest integer that is less than or equal to x, ∀x ∈ X.
Consider a sequence {xn} = {1 + 1

n}n≥2 in (1, 2), then we have
limn→∞fxn = 1 = limn→∞gxn. Similarly for the sequence {yn} = {1 −
1
n}n≥2 in (0, 1), we have limn→∞fyn = 0 = limn→∞gyn. Thus the pair
(f, g) satisfies(E.A). However, f and g are not weakly compatible; as each
u1 ∈ (0, 1) and u2 ∈ (1, 2) are coincidence points of f and g, where they do
not commute. Moreover, they commute at x = 0, 1, 2, ... but none of these
points are coincidence points of f and g. Further, (f, g) is noncompatible.
Hence, (E.A) 6=⇒ weak compatibility.
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3. Implicit relation
Let R and R+ denote the set of real and non-negative real numbers,

respectively. We now state an implicit relation [6] as follows:
Let F be the set of all continuous functions F with F (t1, ..., t6) : R+

6 →
R satisfying the following conditions:
(F1) : F (u, 0, u, 0, 0, u) ≤ 0 =⇒ u = 0, (3.1)
(F2) : F (u, 0, 0, u, u, 0) ≤ 0 =⇒ u = 0. (3.2)

The function F (t1, ..., t6) : R+
6 → R is said to satisfy condition (Fu) if:

(Fu) : F (u, u, 0, 0, u, u) ≥ 0, ∀u > 0. (3.3)
The following are examples of the implicit relation defined above. Another
examples can be found in [5-6].
Example 3.1. Let F (t1, ..., t6) = pt1 − qt2 − r(t3 + t4)− s(t5 + t6), where
p, q, r, s ≥ 0, 0 ≤ r + s < p and 0 ≤ q + 2s ≤ p, then:
(F1) : F (u, 0, u, 0, 0, u) = u(p− r − s) ≤ 0 implies u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u(p− r − s) ≤ 0 implies u = 0 and

(Fu) : F (u, u, 0, 0, u, u) = u(p− q − 2s) ≥ 0, ∀u > 0.

Example 3.2. Let F (t1, ..., t6) = pt1 −max{qt2, (t3 + t4)/2, s(t5 + t6)/2},
where 0 ≤ s < q < 1/2 < p, then:

(F1) : F (u, 0, u, 0, 0, u) = pu−max{u/2, su/2} = u(p− 1/2) ≤ 0 ⇒ u = 0;
(F2) : F (u, 0, 0, u, u, 0) = pu−max{u/2, su/2} = u(p− 1/2) ≤ 0 ⇒ u = 0;

(Fu) : F (u, u, 0, 0, u, u) = pu−max{qu, 0, su} = u(p− q) ≥ 0, ∀u > 0.
Example 3.3. Let F (t1, ..., t6) = t1 −max{qt2, r(t3 + t4)/2, (t5 + t6)/2},
where 0 ≤ q < 1 ≤ r < 2, then:
(F1) : F (u, 0, u, 0, 0, u) = u−max{0, ru/2, u/2} = u(1−r/2) ≤ 0 ⇒ u = 0;

(F2) : F (u, 0, 0, u, u, 0) = u−max{0, ru/2, u/2} = u(1−r/2) ≤ 0 ⇒ u = 0;
(Fu) : F (u, u, 0, 0, u, u) = u−max{qu, 0, u} = u− u = 0, ∀u > 0.

Example 3.4. Let F (t1, ..., t6) = t1 − hmax{t2, t3, t4, t5, t6}, where 0 ≤
h < 1, then:

(F1) : F (u, 0, u, 0, 0, u) = u− hmax{0, u, 0, 0, u} = u(1− h) ≤ 0 ⇒ u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u− hmax{0, 0, u, u, 0} = u(1− h) ≤ 0 ⇒ u = 0;
(Fu) : F (u, u, 0, 0, u, u) = u− hmax{u, 0, 0, u, u} = u(1− h) ≥ 0, ∀u > 0.

Example 3.5. Let F (t1, ..., t6) = t21−at22− t3t4− bt25− ct26 where a, b, c ≥ 0
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and 0 < a + b + c < 1 then:
(F1) : F (u, 0, u, 0, 0, u) = u2(1− c) ≤ 0 ⇒ u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u2(1− b) ≤ 0 ⇒ u = 0 and

(Fu) : F (u, u, 0, 0, u, u) = u2(1− a− b− c) ≥ 0, ∀u > 0.
Example 3.6. Let F (t1, ..., t6) = t31 − k(t32 + t33 + t34 + t35 + t36), where
0 ≤ k ≤ 1/3,then:
(F1) : F (u, 0, u, 0, 0, u) = u3(1− 2k) ≤ 0 ⇒ u = 0;

(F2) : F (u, 0, 0, u, u, 0) = u3(1− 2k) ≤ 0 ⇒ u = 0 and
(Fu) : F (u, u, 0, 0, u, u) = u3(1− 3k) ≥ 0, ∀u > 0.
The following lemma is useful to prove the existence of common fixed point.

Lemma 3.7 [6]. Let (X, d) be a metric space and A, B, S and T be four
self-mappings on Xsatisfying:

F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(By, Sx), d(Ax, Ty)) < 0,

for all x, y ∈ X, where F satisfies property (Fu). Then A, B, S and T have
at most one common fixed point.

The following theorem was proved by Popa [6] for a Meir-Keeler type
contractive condition using the implicit relation:
Theorem A. ([6]) Let A, B, S and T be self-mappings of a metric space
(X, d) such that

(a) A(X) ⊆ T (X), B(X) ⊆ S(X),

(b) given ε > 0, there exists δ > 0 such that
ε ≤ max {d(Sx, Ty), d(Ax, Sx), d(By, Ty), 1

2 [d(By, Sx) + d(Ax, Ty))]} <
ε + δ =⇒ d(Ax,By) < ε,
(c) there exists F ∈ F such that the inequality:
F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(By, Sx), d(Ax, Ty)) < 0,

holds for all x, y ∈ X.
If one of A(X), B(X), S(X) or T (X) is a complete subspace of X then,

(d) A and S have a coincidence point.
(e) B and T have a coincidence point.

Moreover, if the pairs (A,S) and (B, T ) are weakly compatible, then A,
B, S and T have a unique common fixed point.
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The following theorem was proved by Aamri and Moutawakil [1] under
property (E.A)using a contractive condition:
Theorem B. ([1]) Let A, B, S and T be self-mappings of a metric space
(X, d) such that
(a) d(Ax,By) ≤ φ(max {d(Sx, Ty), d(By, Sx), d(By, Ty)}, ∀(x, y) ∈ X2,
where φ : R+ → R+ is a non-decreasing function on R+ such that 0 < φ(t) <
t, for each t ∈ (0,∞).
(b) (A,S) and (B, T ) are weakly compatible,
(c) (A, S) or (B, T ) satisfy property (E.A),
(d) A(X) ⊆ T (X), B(X) ⊆ S(X).

If the range of one of the mappings is a complete subspace of X, then A,
B, Sand T have a unique common fixed point.

In this paper, we intend to unify Theorem A and Theorem B by imposing
property (E.A).Theorem A uses the Meir-Keeler type contractive condition
which is to be removed by an independent notion viz. property (E.A). Sim-
ilarly, Theorem B uses a φ-contractive condition which is to be removed by
its generalized condition viz. implicit relation. Thus we will use property
(E.A) of [1] and implicit relation of [6] to unify under property(E.A) and
implicit relation.

The following two examples show that Meir-Keeler type contractive con-
dition and property (E.A) are independent to each other.
Example 3.8. Let A, B, S and T be four self-mappings of the metric space
([0, 1], d) with the usual metric d defined by
Ax = Bx = 0, if x = 0 or x = 1, Ax = Bx = 1

n+1 ,if 1
n+1 ≤ x < 1

n , n ∈ N;
and
Sx = Tx = x, ∀x ∈ X.
The Meir-Keeler type contractive condition is defined by:
given ε > 0, there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ M(x, y) < ε + δ =⇒ d(Ax,By) < ε. (MKC)

where

M(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty),
1
2
[d(By, Sx)+d(Ax, Ty))]}.

Let us discuss property (E.A) and MKC condition for various cases.
Here, (B, T ) satisfies property (E.A). Indeed, taking { 1

n+1} ⊆ [0, 1], we
getlimn→∞B( 1

n+1) = limn→∞ 1
n+1 = 0 = limn→∞T ( 1

n+1) = limn→∞ 1
n+1 .

Similarly, (A,S) satisfies property (E.A).
Next, we check that property MKC is not valid.
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(i) If x = 0 and y = 1
n , n ≥ 2, then x 6= y andd(Ax,By) = d(0, 1

n) = 1
n .

Further, ε ≤ M(x, y) < ε + δ yields

ε ≤ max
{

d

(
0,

1
n

)
, d(0, 0), d

(
1
n

,
1
n

)
,
1
2

(
d

(
1
n

, 0
)

+ d

(
1
n

, 0
))}

=
1
n

< ε + δ,

showing that ε ≤ d(Ax,By) = 1
n , contradicting MKC condition.

(ii) Similarly, if y = 0 and x = 1
n+1 6= 0, a similar argument verifies that the

MKC condition(b) is not satisfied: if

ε ≤ max
{

d

(
1

n + 1
, 0

)
, d

(
1

n + 1
,

1
n + 1

)
, d(0, 0),

1
2

(
d

(
0,

1
n + 1

)
+ d

(
1

n + 1
, 0

))}

=
1

n + 1
< ε + δ,

showing that ε ≤ d(Ax,By) = 1
n+1 , contradicting MKC condition.

(iii) On the other hand, for a given ε > 0, there exists a δ > 0 such that for
x = xn = yn = y ∈ [ 1

n+1 , 1
n), we have that ε ≤ M(x, y) < ε + δ yields

ε ≤ max

{
0,

∣∣∣∣
1

n + 1
− xn

∣∣∣∣ ,

∣∣∣∣
1

n + 1
− xn

∣∣∣∣ ,
1
2

[∣∣∣∣
1

n + 1
− xn

∣∣∣∣ +
∣∣∣∣

1
n + 1

− xn

∣∣∣∣
]}

=
∣∣∣∣

1
n + 1

− xn

∣∣∣∣ < ε + δ,

implies d(Axn, Byn) = d
(

1
n+1 , 1

n+1

)
= 0 < ε. For these points,MKC condi-

tion is satisfied.
This example illustrates the fact that property (E.A)6=⇒ M.K.C.
Besides, the pair (A,S)is weakly compatible, since Ax = Sx occurs if x = 0
or x = 1

n+1 , n ∈ N, in such cases, AS0 = A0 = 0 = S0 = SA0andAS( 1
n+1) =

A( 1
n+1) = 1

n+1 = S( 1
n+1) = SA( 1

n+1), n ∈ N. Similarly, (B, T )is weakly
compatible.
Example 3.9. Consider the metric space ([0, 1], d) with the usual metric d
and let A, B, S and T be four self-mappings of the metric space Xdefined
by Ax = Bx = 0, if x ∈ X; and Sx = Tx = 1, ∀x ∈ X.
For every sequence {xn} in X, we get limn→∞Axn = 0 6= 1 = limn→∞Sxn,



Common fixed point theorem using implicit relation and property... 217

and analogously for the pair (B, T ). Hence, property (E.A)is not satisfied
for the pairs (A,S), (B, T ).
On the other hand,given ε > 0, there exists a δ > 0 such that for all x, y ∈ X,

ε ≤ M(x, y) < ε + δ =⇒ d(Ax,By) < ε.

Indeed,

M(x, y) = max {d(1, 1), d(0, 1), d(0, 1),
1
2
[d(0, 1) + d(0, 1))]} = 1.

Hence, for ε > 1, there are no x, y satisfying ε ≤ M(x, y) = 1 < ε + δ.
On the other hand, ifε ≤ 1, and we take δ > 1 − ε ≥ 0, for x, y with
ε ≤ M(x, y) = 1 < ε + δ, it is obvious that d(Ax,By) = 0 < ε.
Therefore the Meir-Keeler type contractive condition (MKC) does not imply
property (E.A). Symbolically, MKC 6=⇒ property (E.A).
Hence Meir-Keeler type contractive condition and property (E.A) are inde-
pendent to each other.
Next, we show an example where both conditions (E.A) and (MKC) are
satisfied.
Example 3.10. Let X = [0, 1], and for all x, y ∈ X, d(x, y) = max {x, y}
if x 6= y and d(x, y) = 0 if x = y. One can verify that (X, d)is a complete
metric space. Further, define mappings A,B, S, T : X → X by:
Ax = Bx = 0, if x = 0, and Ax = Bx = 1

n+1 , if 1
n+1 < x ≤ 1

n , n ∈ N, and
Sx = Tx = 0, if x = 0, and Sx = Tx = 1

n , if 1
n+1 < x ≤ 1

n , n ∈ N.
If, for a fixed n ∈ N, we consider the sequence{yk} = { 1

n+1 + 1
3k

(
1
n− 1

n+1

)} in
the interval( 1

n+1 , 1
n

]
, thenlimk→∞d(Byk, Tyk) = 1

n 6= 0,limk→∞Byk = 1
n+1

andlimk→∞Tyk = 1
n , since d(Byk,

1
n+1) = 0 and d(Tyk,

1
n) = 0, for ev-

ery k. Thus property (E.A) can not be extracted using such a sequence.
However, property (E.A) holds, and we can check it just by taking the
sequence in X given by {yn} = { 1

n}, which satisfies limn→∞d(Byn, 0) =
limn→∞d( 1

n+1 , 0) = limn→∞ 1
n+1 = 0 and

limn→∞d(Tyn, 0) = limn→∞d(
1
n

, 0) = limn→∞
1
n

= 0.

Hence limn→∞Byn = limn→∞Tyn = 0 ∈ X and (B, T ) satisfies property
(E.A). Similar considerations can be made for the pair (A,S).
Next, we check that the Meir-Keeler type contractive condition (MKC) is
valid. Let ε > 0. Let

M(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty),
1
2
[d(By, Sx)+d(Ax, Ty)]},
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and observe the following:
(i) If x = y = 0, then M(x, y) = 0 and d(Ax,By) = 0. Note that, in this
case, it is not possible that ε ≤ M(x, y).
(ii) If x = 0 and y ∈ (

1
n+1 , 1

n

]
, then

M(x, y)

= max

{
d

(
0,

1
n

)
, d(0, 0), d

(
1

n + 1
,
1
n

)
,
1
2

(
d

(
1

n + 1
, 0

)
+ d

(
0,

1
n

))}

= max

{
1
n

, 0,
1
n

,
1
2

(
1

n + 1
+

1
n

)}
=

1
n

.

Besides, d(Ax,By) = d
(
0, 1

n+1

)
= 1

n+1 .

(iii) If y = 0 and x ∈ (
1

n+1 , 1
n

]
, then

M(x, y)

= max

{
d

(
1
n

, 0
)

, d

(
1

n + 1
,
1
n

)
, d(0, 0),

1
2

(
d

(
0,

1
n

)
+ d

(
1

n + 1
, 0

))}

= max

{
1
n

,
1
n

, 0,
1
2

(
1
n

+
1

n + 1

)}
=

1
n

,

and d(Ax,By) = d
(

1
n+1 , 0

)
= 1

n+1 .

(iv) If x ∈ (
1

n+1 , 1
n

]
and y ∈ (

1
m+1 , 1

m

]
, with n < m, then

M(x, y)

= max

{
d

(
1
n

,
1
m

)
, d

(
1

n + 1
,
1
n

)
, d

(
1

m + 1
,

1
m

)
,

1
2

(
d

(
1

m + 1
,
1
n

)
+ d

(
1

n + 1
,

1
m

))}

= max

{
1
n

,
1
n

,
1
m

,
1
2

(
1
n

+
1

n + 1

)}
=

1
n

,

and d(Ax,By) = d
(

1
n+1 , 1

m+1

)
= 1

n+1 .
On the other hand, if n > m,we get

M(x, y) = max

{
1
m

,
1
n

,
1
m

,
1
2

(
1

m + 1
+

1
m

)}
=

1
m

,

and d(Ax,By) = d
(

1
n+1 , 1

m+1

)
= 1

m+1 .
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(v) If x, y ∈ (
1

n+1 , 1
n

]
, then

M(x, y)

= max

{
d

(
1
n

,
1
n

)
, d

(
1

n + 1
,
1
n

)
, d

(
1

n + 1
,
1
n

)
,

1
2

(
d

(
1

n + 1
,
1
n

)
+ d

(
1

n + 1
,
1
n

))}

= max

{
1
n

,
1
n

,
1
n

,
1
2

(
1
n

+
1
n

)}
=

1
n

,

and d(Ax,By) = d
(

1
n+1 , 1

n+1

)
= 1

n+1 .

Therefore, it suffices to find δ > 0 such that ε ≤ M(x, y) = 1
n < ε+δ implies

d(Ax,By) = 1
n+1 < ε.If ε > 1, there are no x, y such that ε ≤ M(x, y) = 1

n .
If ε = 1, then ε ≤ M(x, y) = 1

n implies that n = 1 and hence it is obvi-
ous that d(Ax, By) = 1

n+1 = 1
2 < ε.If we fix 0 < ε < 1, then there exists

a finite number of integer numbers satisfying that ε ≤ M(x, y) = 1
n . For

these numbers, 1
n < ε + δ is equivalent to 1

n − δ < ε, so that, if we get that
d(Ax,By) = 1

n+1 ≤ 1
n−δ, for n with ε ≤ 1

n ,we deduce MKC condition.Then,
it suffices to take 0 < δ ≤ 1

n − 1
n+1 , for n such that 1

ε ≥ n. We can choose,
for instance, 0 < δ = 1

K − 1
K+1 = 1

K(K+1) , where K =
[

1
ε

]
(the integer part

of 1
ε ).

This proves that MKC is satisfied.
In our main Theorem we will apply property (E.A) and implicit relation.

Instead of condition (b) viz. Meir-Keeler type contractive condition of The-
orem A, we will impose property (E.A). Similarly, we will use more general
contractive condition than (a) as used in Theorem B. So we are unifying
the Theorem A and Theorem B and generalizing the Theorem B for an im-
plicit relation and property (E.A). In this paper, we prove a common fixed
point theorem for a quadruple of mappings by using an implicit relation and
property (E.A) under weak compatibility. By an example we illustrate and
verify our main Theorem. Here is our Main Result:

4. Main Results
In this section we state and prove our main result.

Theorem 4.1. Let A, B, S and T be four self-maps of a metric space
(X, d) satisfying:
(i) A(X) ⊆ T (X), B(X) ⊆ S(X),
(ii) there exists a continuous function F : R+

6 → R in F such that

F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(By, Sx), d(Ax, Ty)) < 0,
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for all x, y ∈ X, where F satisfies all the conditions of implicit relation,
(iii) (A,S) and (B, T ) are weakly compatible,
(iv) (A, S) or (B, T ) satisfy property (E.A).
Assume that one of the following conditions hold:
(v) {Byn} is a bounded sequence for every {yn} ⊆ X such that{Tyn} is
convergent (in case (A,S) satisfies property (E.A)), and {Ayn} is a bounded
sequence for every {yn} ⊆ X such that{Syn} is convergent (in case (B, T )
satisfies property (E.A)).
(vi) If {zn}, {rn} and {wn} are nonnegative sequences such that {zn} → ∞,
{wn} → ∞, as n →∞ and

F (zn, rn, rn, zn, wn, 0) ≤ 0, n ∈ N, (in case (A,S) satisfies (E.A)),

F (zn, rn, zn, rn, 0, wn) ≤ 0, n ∈ N, (in case (B, T ) satisfies (E.A)),

then {rn} → ∞, as n →∞.
If the range of one of the mappings is a complete subspace of X, then A,

B, S and T have a unique common fixed point.
Proof. Suppose that (B, T ) satisfies property (E.A) then, by definition, there
exists a sequence {xn}in X such that limn→∞Bxn = limn→∞Txn = t,
for some t ∈ X. Since B(X) ⊆ S(X), there exists in X a sequence
{yn} such that Bxn = Syn. Hence limn→∞Syn = t. Let us show that
limn→∞Ayn = t. Indeed, in view of implicit relation (ii), we have

F (d(Ayn, Bxn), d(Syn, Txn), d(Ayn, Syn), d(Bxn, Txn),
d(Bxn, Syn), d(Ayn, Txn)) < 0,

i.e., F (d(Ayn, Bxn), d(Bxn, Txn), d(Ayn, Bxn), d(Bxn, Txn),
d(Bxn, Bxn), d(Ayn, Txn)) ≤ 0,

or, F (d(Ayn, Bxn), d(Bxn, Txn), d(Ayn, Bxn), d(Bxn, Txn),
0, d(Ayn, Txn)) ≤ 0.

Using condition (v), {Ayn} is a bounded sequence. If condition (vi) holds,
and we suppose that {Ayn} is not bounded, then there exists a subsequence
{nk} of nonnegative integer numbers such that d(Aynk

, Bxnk
) → +∞, as

k → ∞. Similarly, d(Aynk
, Txnk

) → +∞, as k → ∞, and, by the im-
plicit relation and (vi), d(Bxnk

, Txnk
) → +∞, as k → ∞, which is a

contradiction. Hence, in both cases, {Ayn} is a bounded sequence and
{d(Ayn, Bxn)} is bounded,hencelimsupn→∞d(Ayn, Bxn) is a finite num-
ber.Consider pn = d(Ayn, Bxn), cn = d(Bxn, Txn) and qn = d(Ayn, Txn),
n ∈ N. Note that

|pn − qn| = |d(Ayn, Bxn)− d(Ayn, Txn)| ≤ d(Bxn, Txn) → 0, n →∞,

in consequence,|pn − qn| → 0, n → ∞.Since {pn} is bounded (and {qn} is
bounded), the numbers limsupn→∞pn and limsupn→∞qn are finite. Indeed,



Common fixed point theorem using implicit relation and property... 221

in this case, limsupn→∞pn = limsupn→∞qn. To check that limsupn→∞pn

is the upper limit of {qn}, it suffices to check that, if {pnk
} → p then

{qnk
} = {qnk

− pnk
} + {pnk

} → p, and conversely.Besides, {cn} → 0, as
n →∞. Using the continuity of F and denoting limsupn→∞d(Ayn, Bxn) =
limsupn→∞pn = l, we check that

F (l, 0, l, 0, 0, l) ≤ 0.

Indeed, using that limsupn→∞pn = l, we obtain a subsequence {pnk
} of {pn}

such that {pnk
} → l, as k →∞, hence{qnk

} = {qnk
− pnk

}+ {pnk
} → l, and

{cnk
} → 0, as k →∞. Since

F (pnk
, cnk

, pnk
, cnk

, 0, qnk
) ≤ 0, ∀k ∈ N,

using continuity of F , we get F (l, 0, l, 0, 0, l) ≤ 0.
Using (F1), we get l = limsupn→∞d(Ayn, Bxn) = 0, and limn→∞d(Ayn, Bxn) =
0, whence limn→∞Ayn = t. Hence in all Ayn → t, Syn → t, Bxn →
t, and Txn → t, as n →∞, for some t ∈ X.

Next, suppose that S(X) is a complete subspace of X, then t = Su, for
some u ∈ X.In order to show that Au = t, putting u for x and xn for y in
the implicit relation (ii), we have

F (d(Au,Bxn), d(Su, Txn), d(Au, Su), d(Bxn, Txn),
d(Bxn, Su), d(Au, Txn)) < 0,

letting n →∞ it yields

F (d(Au, t), 0, d(Au, t), 0, 0, d(Au, t)) ≤ 0,

which, on using (F1), yields d(Au, t) = 0, so that Au = t = Su and u is a
coincidence point of A andS.

Now, since A(X) ⊆ T (X), there exists v ∈ X such that Au = Tv. We
claim that Bv = t. Using implicit relation (ii) we have,

F (d(Au,Bv), d(Su, Tv), d(Au, Su), d(Bv, Tv),
d(Bv, Su), d(Au, Tv)) < 0,

i.e., F (d(t, Bv), 0, 0, d(Bv, t), d(Bv, t), 0) < 0. (A)
Similarly, by putting yn for x and v for y in the implicit relation, we have

F (d(Ayn, Bv), d(Syn, T v), d(Ayn, Syn), d(Bv, Tv),
d(Bv, Syn), d(Ayn, T v)) < 0,

which, on letting n →∞, gives

F (d(t, Bv), 0, 0, d(Bv, t), d(Bv, t), 0) ≤ 0 (B)

from (A) and (B), on using (F2), we have d(t, Bv) = 0, i.e., Bv = t = Tv
and v is a coincidence point ofB and T . Thus, Au = Su = Bv = Tv = t.
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The weak compatibility of A and S implies that ASu = SAu so that
AAu = ASu = SAu = SSu. Let us show that Au is a common fixed point
of A and S. If AAu 6= Au, then implicit relation (ii) yields

F (d(AAu,Bv), d(SAu, Tv), d(AAu, SAu), d(Bv, Tv),
d(Bv, SAu), d(AAu, Tv)) < 0,

i.e., F (d(AAu,Au), d(AAu,Au), 0, 0, d(Au,AAu), d(AAu,Au)) < 0,
a contradiction of (Fu). Thus AAu = Au = SAu, and Au is a common fixed
point of A and S. Similarly we can prove that Bv is a common fixed point
of B and T . Since Au = Bv, we conclude that Au is a common fixed point
of A, B, S and T .

The proof is similar when T (X) is assumed to be a complete subspace
of X. The cases in which A(X) or B(X) is a complete subspace of X are
similar to the cases in which T (X) or S(X) respectively is complete, since
A(X) ⊆ T (X) and B(X) ⊆ S(X).

The uniqueness follows from Lemma 3.7. This proves the existence of a
unique common fixed point of A, B, S andT . This completes the proof.
Remark 4.2. Note that condition (vi) in Theorem 4.1 can be expressed
similarly in the following way: if{zn},{rn} and {wn} are nonnegative se-
quences such that limsupn→∞zn = limsupn→∞wn = ∞, and

F (zn, rn, rn, zn, wn, 0) ≤ 0, n ∈ N, (in case (A,S) satisfies (E.A)),

F (zn, rn, zn, rn, 0, wn) ≤ 0, n ∈ N, (in case (B, T ) satisfies (E.A)),

then limsupn→∞rn = ∞.
Remark 4.3. Continuity of F is a very restrictive condition in Theorem 4.1.
We can relax continuity ofF , extending this result to the more general case
whereF is continuous at certain points of the boundary of (R+)6. Consider
the following conditions:
(C) If {pn}, {cn} and {qn} are nonnegative sequences such that {pn} is
bounded, {|pn − qn|} → 0, as n →∞, {cn} → 0, as n →∞, and

F (pn, cn, pn, cn, 0, qn) ≤ 0, n ∈ N,

thenF

(
lim sup

n→∞
pn, 0, lim sup

n→∞
pn, 0, 0, lim sup

n→∞
qn

)
≤ 0.

(Ĉ) If {pn}, {cn} and {qn} are nonnegative sequences such that {pn} is
bounded, {|pn − qn|} → 0, as n →∞, {cn} → 0, as n →∞, and

F (pn, cn, cn, pn, qn, 0) ≤ 0, n ∈ N,

thenF

(
lim sup

n→∞
pn, 0, 0, lim sup

n→∞
pn, lim sup

n→∞
qn, 0

)
≤ 0.

Alternatively, we can use conditions (CS) and (ĈS) expressed in terms of
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sequences:
(CS) If {pn}, {cn} and {qn} are nonnegative sequences such that {pn} → l,
{qn} → l, {cn} → 0, as n →∞, and

F (pn, cn, pn, cn, 0, qn) ≤ 0, n ∈ N,

thenF (l, 0, l, 0, 0, l) ≤ 0.

(ĈS) If {pn}, {cn} and {qn} are nonnegative sequences such that {pn} → l,
{qn} → l, {cn} → 0, as n →∞, and

F (pn, cn, cn, pn, qn, 0) ≤ 0, n ∈ N,

thenF (l, 0, 0, l, l, 0) ≤ 0.
Note that (CS) is trivially valid if F̃ (t1, t2, t3) = F (t1, t2, t1, t2, 0, t3) is con-
tinuous at (z, 0, z), z ∈ R+, or if F restricted to the set (R+)4 × {0} × R+

is continuous at(z, 0, z, 0, 0, z), z ∈ R+. Besides, (ĈS) is trivially valid
ifF̃ (t1, t2, t3) = F (t1, t2, t2, t1, t3, 0) is continuous at (z, 0, z), z ∈ R+, or
if F restricted to the set (R+)5×{0} is continuous at(z, 0, 0, z, z, 0), z ∈ R+.
Consider also the following conditions:(H1) If {an}, {bn}, {dn}, {en}, and
{fn} are nonnegative sequences such that {an} → l, {fn} → l, {bn} → 0,
{dn} → 0, {en} → 0, as n →∞, and

F (an, bn, l, dn, en, fn) ≤ 0, n ∈ N,

thenF (l, 0, l, 0, 0, l) ≤ 0.
(H2) If {an}, {bn}, {cn}, {en}, and {fn} are nonnegative sequences such
that {an} → l, {en} → l, {bn} → 0, {cn} → 0, {fn} → 0, as n →∞, and

F (an, bn, cn, l, en, fn) ≤ 0, n ∈ N,

thenF (l, 0, 0, l, l, 0) ≤ 0.
Note that (H1) is valid if F is continuous at (z, 0, z, 0, 0, z), z ∈ R+, or if
each restriction of F to the subset {t3 = z} is continuous at (z, 0, z, 0, 0, z),
z ∈ R+, that is,Fz(t1, t2, t4, t5, t6) = F (t1, t2, z, t4, t5, t6) is continuous at
(z, 0, 0, 0, z), z ∈ R+.Similarly, (H2) is valid if F is continuous at (z, 0, 0, z, z, 0),
z ∈ R+, or if each restriction of F to the subset {t4 = z} is continuous at
(z, 0, 0, z, z, 0), z ∈ R+, that is,Fz(t1, t2, t3, t5, t6) = F (t1, t2, t3, z, t5, t6) is
continuous at (z, 0, 0, z, 0), z ∈ R+.
Continuity of F in Theorem 4.1 can be replaced by the validity of the fol-
lowing assumptions:

• Hypothesis (C) (or (CS)), if (B, T ) satisfies property (E.A).
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• Hypothesis (Ĉ) (or (ĈS)), if (A,S) satisfies property (E.A).

• Hypothesis (H1), if S(X) or B(X) is complete.

• Hypothesis (H2), if T (X) or A(X) is complete.

By taking A = B and S = T in Theorem 4.1, we obtain the following
corollary:
Corollary 4.4. Let A and S be two weakly compatible self-mappings of a
metric space (X, d) suchthat
(i) A and S satisfy property (E.A),
(ii) there exists a continuous (see Remark 4.3) function F : R+6 → R inF
such that

F (d(Ax,Ay), d(Sx, Sy), d(Ax, Sx), d(Ay, Sy), d(Ay, Sx), d(Ax, Sy)) < 0,

for all x, y ∈ X, where F satisfies all the conditions of implicit relation.
(iii) A(X) ⊆ S(X).
Assume that one of the following conditions hold:
(iv) {Ayn} is a bounded sequence for every {yn} ⊆ X such that{Syn} is
convergent,
or
(v) If {zn}, {rn} and {wn} are nonnegative sequences such that {zn} → ∞,
{wn} → ∞, as n →∞ and F (zn, rn, rn, zn, wn, 0) ≤ 0, n ∈ N, then {rn} →
∞, as n →∞.

If S(X) or A(X) is a complete subspace of X, then A and S have a
unique common fixed point.
Following the lines of the proof of Theorem 4.1, we can also obtain the
following result for A = B and S = T .
Corollary 4.5. Let A and S be two weakly compatible self-mappings of a
metric space (X, d) suchthat
(i) A and S satisfy property (E.A),
(ii) there exists a continuous function F : R+6 → R inF such that

F (d(Ax,Ay), d(Sx, Sy), d(Ax, Sx), d(Ay, Sy), d(Ay, Sx), d(Ax, Sy)) < 0,

for all x, y ∈ X, where F satisfies all the conditions of implicit relation.
(iii) A(X) ⊆ S(X).

If S(X) or A(X) is a complete subspace of X, then A and S have a
unique common fixed point.
Remark 4.6. In Corollaries 4.4 and 4.5, we can take the continuous func-
tion F (t1, t2, ..., t6) = t1−max{t2, t3+t4

2 , t5+t6
2 }, which satisfies the following
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conditions:
(F1) : F (u, 0, u, 0, 0, u) = u − max{0, u

2 , u
2} = u − u

2 = u
2 ≤ 0 implies

u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u − max{0, u

2 , u
2} = u − u

2 = u
2 ≤ 0 implies

u = 0, and
(Fu) : F (u, u, 0, 0, u, u) = u−max{u, 0, u} = u− u = 0, ∀u > 0.
In this case, the implicit relation can be written as

d(Ax,Ay) < max

{
d(Sx, Sy),

d(Ax, Sx) + d(Ay, Sy)
2

,
d(Ay, Sx) + d(Ax, Sy)

2

}
,

for x, y ∈ X. Compare it with condition (ii) in Theorem 1 [1].
By setting S = T in Theorem 4.1 we obtain the following corollary:
Corollary 4.7. Let A, B and S be self-mappings of a metric space (X, d)
such that
(i) A(X) ⊆ S(X), B(X) ⊆ S(X),
(ii) there exists a continuous (see Remark 4.3) function F : R+6 → R in
F such that

F (d(Ax,By), d(Sx, Sy), d(Ax, Sx), d(By, Sy), d(By, Sx), d(Ax, Sy)) < 0,

for all x, y ∈ X, where F satisfies all the conditions of implicit relation.
(iii) (A,S) or (B, S) satisfy property (E.A),
(iv) (A,S) and (B, S) are weakly compatible.
Assume that one of the following conditions hold:
(v) {Byn} is a bounded sequence for every {yn} ⊆ X such that{Syn} is
convergent (in case (A,S) satisfies property (E.A)), and {Ayn} is a bounded
sequence for every {yn} ⊆ X such that{Syn} is convergent (in case (B, S)
satisfies property (E.A)),
or
(vi) If {zn}, {rn} and {wn} are nonnegative sequences such that {zn} → ∞,
{wn} → ∞, as n →∞ and

F (zn, rn, rn, zn, wn, 0) ≤ 0, n ∈ N, (in case (A,S) satisfies (E.A)),

F (zn, rn, zn, rn, 0, wn) ≤ 0, n ∈ N, (in case (B, S) satisfies (E.A)),

then {rn} → ∞, as n →∞.
If the range of one of the mappings A, B or S is a complete subspace of

X, then A, B and S have a unique common fixed point.
Remark 4.8. It is clear that two non compatible self-maps also satisfy
property(E.A). So our result is also true for non compatible mappings as
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well.
Remark 4.9. From the proof of Theorem 4.1, we deduce that the strict ’<’
sign can be replaced by ’≤’if we admit that the inequality in condition (Fu)
is also strict, that is, F (u, u, 0, 0, u, u) > 0, ∀u > 0. The same applies to
the previous corollaries.

The following remarks and examples validate our main Theorem 4.1.
Remark 4.10. If we put F (t1, t2, ..., t6) = t1 − ψ(max{t2, t4, t5}), where
ψ : R+ → R+ is such that ψ(0) = 0 and 0 < ψ(t) < t,t > 0, then, according
to Remark 4.9, the implicit relation is written as

F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(By, Sx), d(Ax, Ty)) ≤ 0

⇒ d(Ax,By)− ψ(max{d(Sx, Ty), d(By, Ty), d(By, Sx)}) ≤ 0

⇒ d(Ax,By) ≤ ψ(max{d(Sx, Ty), d(By, Ty), d(By, Sx)}).
For this F , we obtain
(F1) : F (u, 0, u, 0, 0, u) = u− ψ(0) = u ≤ 0 implies u = 0;
(F2) : F (u, 0, 0, u, u, 0) = u − ψ(u) ≤ 0 implies u = 0, since foru > 0,
u− ψ(u) > 0, and
(Fu) : F (u, u, 0, 0, u, u) = u− ψ(u) > 0, ∀u > 0.
Besides, condition (vi) of Theorem 4.1 (in case (B, T ) satisfies (E.A)), (C)
and (CS) hold in this example.
Indeed, to check (vi), let {zn}, {rn} and {wn} be non negative sequences
such that {zn} → ∞, {wn} → ∞, as n →∞ and

F (zn, rn, zn, rn, 0, wn) ≤ 0, n ∈ N,

then zn ≤ ψ(max{rn, rn, 0}), for all n, that is, zn ≤ ψ(rn), for all n. Since
{zn} → ∞, as n → ∞, then {ψ(rn)} → ∞, as n → ∞, which implies that
rn > 0 for n large enough, and 0 < ψ(rn) < rn for n large enough, hence
{rn} → ∞, as n →∞, and (vi) holds for the case (B, T ) satisfies (E.A).
Next, we check the validity of (CS): For ψ in the above-mentioned conditions,
ψ is right upper-semicontinuous at 0. Indeed, for a given ε > 0, there exists
δ = ε > 0, such that

ψ(t) < t < ε = ψ(0) + ε, 0 < t < δ,

ψ(0) = 0 < ψ(0) + ε.

We check that condition (CS) holds for F if ψ is right upper-semicontinuous
at 0.Let {pn}, {cn} and {qn} be nonnegative sequences such that {pn} → l,
{qn} → l, {cn} → 0, as n →∞, and

F (pn, cn, pn, cn, 0, qn) ≤ 0, n ∈ N,
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that is,
pn ≤ ψ(max{cn, cn, 0}) = ψ(cn), ∀n ∈ N.

We check that F (l, 0, l, 0, 0, l) ≤ 0, that is,l ≤ ψ(max{0, 0, 0}) =
ψ(0).Note that, if l = 0, it is trivially satisfied.Since ψ is right upper semi-
continuous at 0, given ε > 0, there exists δ > 0 such that ψ(x) < ψ(0) + ε,
for x ∈ [0, δ). On the other hand, using that {cn} → 0+, given δ > 0, there
exists ν ∈ N such that 0 ≤ cn < δ, for n ≥ ν, and hence ψ(cn) < ψ(0) + ε,
for n ≥ ν,which implies 0 ≤ pn < ψ(0) + ε, for n ≥ ν. We have proved that
limsupn→∞pn ≤ ψ(0),that is,l ≤ ψ(0). Hence, condition (CS) is valid.
Besides, it is easy to check the validity of condition (H1).
Therefore our main Theorem 4.1 extends Theorem B of Aamri and Moutawakil,
since they considered ψ to be nondecreasing and such that 0 < ψ(t) < t,t >
0, which clearly implies ψ(0) = 0.
Remark 4.11. Consider F (t1, t2, ..., t6) = t1 − ψ(max{t2, t4, t6}), where
ψ : R+ → R+ is upper semicontinuous for t > 0.Then conditions (C) and
(CS) are valid. To check (CS), we take {pn}, {cn} and {qn} nonnegative
sequences such that {pn} → l, {qn} → l, {cn} → 0, as n →∞, and

F (pn, cn, pn, cn, 0, qn) ≤ 0, n ∈ N,

that is,
pn ≤ ψ(max{cn, cn, qn}), ∀n ∈ N.

We check that F (l, 0, l, 0, 0, l) ≤ 0, that is,l ≤ ψ(max{0, 0, l}) =
ψ(l), or, l ≤ ψ(l). If l = 0, there is nothing to prove. Suppose that l > 0
and take a fixed ε > 0. By the upper-semicontinuity of ψ at l > 0, we get
that there exists a neighborhood (l − δ, l + δ) of l (δ < l) such that, for
every x ∈ (l − δ, l + δ), thenψ(x) < ψ(l) + ε. Since {max{cn, cn, qn}} → l,
given δ > 0, there exists R ∈ N such that |max{cn, cn, qn}− l| < δ, for every
n ≥ R. Hence pn ≤ ψ(max{cn, cn, qn}) < ψ(l)+ ε, for n ≥ R. Therefore, we
have proved that, for every ε > 0, there exists R ∈ N such that, for every
n ≥ R, pn < ψ(l) + ε.This proves that limsupn→∞pn ≤ ψ(l), thus l ≤ ψ(l).
A similar reasoning provides the validity of (ĈS) and (H1). Condition (H2)
is also satisfied.
For this function F , the implicit condition can be written as

d(Ax,By) ≤ ψ(max{d(Sx, Ty), d(By, Ty), d(Ax, Ty)}),

for x, y ∈ X,and F satisfies properties (F1), (F2) and (Fu) if 0 < ψ(t) < t
for t > 0. Indeed,
(F1) : F (u, 0, u, 0, 0, u) = u− ψ(max{0, 0, u}) = u− ψ(u) ≤ 0 ⇒ u = 0,
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(F2) : F (u, 0, 0, u, u, 0) = u− ψ(max{0, u, 0}) = u− ψ(u) ≤ 0 ⇒ u = 0,
(Fu) : F (u, u, 0, 0, u, u) = u−ψ(max{u, 0, u}) = u−ψ(u) > 0, for all u > 0.
Example 4.12. Consider F (t1, t2, ..., t6) =

∫ t1
0 ϕ(t)dt−φ

(∫ max{t2,t4,t5}
0 ϕ(t)dt

)
,

whereϕ : R+ → R+ is a Lebesgue-integrable mapping, summable on each
compact interval,nonnegative and such that

∫ ε
0 ϕ(t)dt > 0, ∀ε > 0, andφ :

R+ → R+ is such thatφ(0) = 0 and0 < φ(t) < t,t > 0.The implicit relation
is written as

∫ d(Ax,By)

0
ϕ(t)dt ≤ φ

(∫ max{d(Sx,Ty),d(By,Ty),d(By,Sx)}

0
ϕ(t)dt

)
,

for x, y ∈ X. For a related problem, see Theorem 1 and Corollary 3 in
[2].We can check that F satisfies the following properties:
(F1) : F (u, 0, u, 0, 0, u) =

∫ u
0 ϕ(t)dt − φ

(∫ max{0,0,0}
0 ϕ(t)dt

)
=

∫ u
0 ϕ(t)dt −

φ (0) =
∫ u
0 ϕ(t)dt ≤ 0 implies u = 0;

(F2) : F (u, 0, 0, u, u, 0) =
∫ u
0 ϕ(t)dt − φ

(∫ max{0,u,u}
0 ϕ(t)dt

)
=

∫ u
0 ϕ(t)dt −

φ
(∫ u

0 ϕ(t)dt
) ≤ 0 implies u = 0 , since foru > 0,

∫ u
0 ϕ(t)dt > 0 and∫ u

0 ϕ(t)dt ≤ φ
(∫ u

0 ϕ(t)dt
)

<
∫ u
0 ϕ(t)dt, which is a contradiction, and

(Fu) : F (u, u, 0, 0, u, u) =
∫ u
0 ϕ(t)dt − φ

(∫ max{u,0,u}
0 ϕ(t)dt

)
=

∫ u
0 ϕ(t)dt −

φ
(∫ u

0 ϕ(t)dt
)

> 0, ∀u > 0.
Besides, condition (vi) of Theorem 4.1 (for the case (B, T ) satisfies (E.A)),
(C) and (CS) hold in this example.
Let {zn}, {rn} and {wn} be nonnegative sequences such that {zn} → ∞,
{wn} → ∞, as n →∞ and

F (zn, rn, zn, rn, 0, wn) ≤ 0, n ∈ N,

then
∫ zn

0
ϕ(t)dt ≤ φ

(∫ max{rn,rn,0}

0
ϕ(t)dt

)
= φ

(∫ rn

0
ϕ(t)dt

)
, n ∈ N.

Since {zn} → ∞, as n → ∞, then
∫ zn

0 ϕ(t)dt > 0, for n ≥ n0, and hence
φ

(∫ rn

0 ϕ(t)dt
)

> 0, forn ≥ n0, which implies
∫ rn

0 ϕ(t)dt > 0, for n ≥ n0, and∫ zn

0 ϕ(t)dt <
∫ rn

0 ϕ(t)dt, n ≥ n0. Since
∫ u
0 ϕ(t)dt is nondecreasing inu, then

zn < rn, n ≥ n0, which joint to {zn} → ∞ implies{rn} → ∞, as n →∞.
To check the validity of (CS),take {pn}, {cn} and {qn} nonnegative sequences
such that {pn} → l, {qn} → l, {cn} → 0, as n →∞, and

F (pn, cn, pn, cn, 0, qn) ≤ 0, n ∈ N,
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which implies

∫ pn

0
ϕ(t)dt ≤ φ

(∫ max{cn,cn,0}

0
ϕ(t)dt

)
= φ

(∫ cn

0
ϕ(t)dt

)
, n ∈ N.

We want to prove that F (l, 0, l, 0, 0, l) ≤ 0, that is,

∫ l

0
ϕ(t)dt ≤ φ

(∫ max{0,0,0}

0
ϕ(t)dt

)
= φ (0) = 0,

or, l = 0.From the implicit relation and the hypotheses on ψ, we obtain, for
n with cn = 0, ∫ pn

0
ϕ(t)dt ≤ φ (0) = 0,

and for n with cn > 0,
∫ pn

0
ϕ(t)dt ≤ φ

(∫ cn

0
ϕ(t)dt

)
<

∫ cn

0
ϕ(t)dt.

From these inequalities, and the fact that {cn} → 0, we deduce that
∫ l
0 ϕ(t)dt ≤

0, hence l = 0, and condition (CS) follows.
Similarly, the validity of (H1) can be deduced.
Example 4.13. Let A, B, S and T be four self-maps on X = [2,∞), with
the usual metric d(x, y) = |x− y|, defined by:
Ax = 2, Tx = x, Bx = 2, ∀ x ∈ X, and Sx = 2 if x is a rational
number of X, and Sx = 3 if x is an irrational number of X.

Let us define a function F ∈ F such that F : R+
6 → R where F (t1, ..., t6) =

t1 − hmax{2t2, t3, t4, t5, t6}, for each t1, ..., t6 ≥ 0, where 0 ≤ h < 1
2 , then

we observe that:
(i) A(X) = {2} ⊆ T (X) = X and B(X) = {2} ⊆ S(X) = {2, 3}.
(ii) Let us discuss two cases for the elements x, y ∈ X and obtain the
implicit relation:
Case I. If x is a rational number of X and y ∈ X, then we have:
F (0, |2− y|, 0, |2− y|, 0, |2− y|) = 0− hmax{2|2− y|, 0, |2− y|, 0, |2−
y|} = −2h|2− y| ≤ 0, as 0 ≤ h < 1

2 .
Case II. If x is an irrational number of X and y ∈ X, we have:

F (0, |3−y|, 1, |y−2|, 1, |y−2|) = 0−hmax{2|3−y|, 1, |y−2|, 1, |y−2|} ≤ 0,

as 0 ≤ h < 1
2 .

Moreover,
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(F1) : F (u, 0, u, 0, 0, u) = u− hmax{0, u, 0, 0, u} = u(1− h) ≤ 0 ⇒ u = 0,
(F2) : F (u, 0, 0, u, u, 0) = u− hmax{0, 0, u, u, 0} = u(1− h) ≤ 0 ⇒ u = 0,
(Fu) : F (u, u, 0, 0, u, u) = u− hmax{2u, 0, 0, u, u} = u(1− 2h) > 0,
for all u > 0, as 0 ≤ h < 1

2 ; showing that (F1), (F2) and (Fu) are satisfied.
(iii) Both (A, S) and (B, T ) are weakly compatible. Indeed, Ax = Sx if
and only if x ∈ Q∩X,and, for these points, ASx = A(2) = 2 = S(2) = SAx.
On the other hand, Bx = Tx if and only if x = 2 and BT (2) = B(2) = 2 =
T (2) = TB(2).
(iv) Let us discuss the property (E.A) for a given pair of mappings. Sup-
pose that {yn} is an arbitrary sequence in X, then we have Ayn = 2,
Syn = 2 if yn is a rational number, and Syn = 3 if yn is an irrational
number.Therefore limnAyn = limnSyn = 2, iff yn is a rational number of
X (for n large). For instance, consider the sequence {yn} =

{
2 + 1

n

}
. Thus

limnAyn = limnSyn = 2. Hence the pair(A,S) satisfies property (E.A).
On the other hand, if we take a sequence {yn} of irrational numbers of

X (e.g., a subsequence of yn = 2 + 1√
n

corresponding to n 6= k2, k ∈ N),
thenlimnAyn = 2 6= limnSyn = 3 and such a sequence is not appropriate to
check the validity of property (E.A).
Besides, for any sequence in X with {yn} → 2 (e.g. {yn} =

{
2 + 1

n

}
), we

obtain limnByn = limnTyn = 2, and (B, T ) satisfies property (E.A). Thus
both pairs satisfy property (E.A) and condition (iv) is satisfied for both
pairs.
(v) For every {yn} ⊆ X such that{Tyn} = {yn} is convergent, then
{Byn} = {2} is a bounded sequence ((A,S) satisfies property (E.A)), and,
besides, for every {yn} ⊆ X such that{Syn} is convergent, then{Ayn} = {2}
is a bounded sequence ((B, T ) satisfies property (E.A)).
(vi) The subset T (X) = X is complete.

Hence all the conditions of our theorem are satisfied and x = 2 is the
only common fixed point of A, B, S and T . This validates our main Theo-
rem.
Example 4.14. Let A, B, S and T be the same four self-maps of the
previous Example on X = [2,∞), with the usual metricd(x, y) = |x −
y|. Consider function F ∈ F such that F : R+

6 → R where F (t1, ..., t6) =
t1−hmax{2t2, t4− t3, t5− t6}, for each t1, ..., t6 ≥ 0, where 0 < h < 1

2 , then
F satisfies that:
(F1) : F (u, 0, u, 0, 0, u) = u− hmax{0,−u,−u} = u ≤ 0 ⇒ u = 0,
(F2) : F (u, 0, 0, u, u, 0) = u− hmax{0, u, u} = u(1− h) ≤ 0 ⇒ u = 0,
(Fu) : F (u, u, 0, 0, u, u) = u− hmax{2u, 0, 0} = u(1− 2h) > 0,for all u > 0.
Moreover, for x, y ∈ X:
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Case I. If x is a rational number of X and y ∈ X, then:
F (0, |2 − y|, 0, |2 − y|, 0, |2 − y|) = −hmax{2|2 − y|, |2 − y|, − |2 −
y|} = −2h|2− y| ≤ 0.
Case II. If x is an irrational number of X and y ∈ X, we have:

F (0, |3−y|, 1, |y−2|, 1, |y−2|) = 0−hmax{2|3−y|, |y−2|−1, 1−|y−2|} ≤ 0.

In this case, F satisfies property (vi) in Theorem 4.1 (note that (B, T )
satisfies property (E.A)). Indeed, suppose that {zn}, {rn} and {wn} are
nonnegative sequences such that {zn} → ∞, {wn} → ∞, as n →∞, and

F (zn, rn, zn, rn, 0, wn) = zn − hmax{2rn, rn − zn,−wn} ≤ 0, n ∈ N.

Hence, taking into account the sign of the sequences, we get

zn ≤ h max{2rn, rn − zn,−wn} = 2hrn,

for all n, and in consequence, {zn} → ∞ implies {rn} → ∞, as n →∞.
See Example 4.13, for the validity of other hypotheses in Theorem 4.1.
Remark 4.15. If we take S = idX the identity map in Corollary 4.7, then
A(X) ⊆ idX(X), and B(X) ⊆ idX(X) is trivially valid and the implicit
relation can be written as

F (d(Ax, By), d(x, y), d(Ax, x), d(By, y), d(By, x), d(Ax, y)) ≤ 0,

for all x, y ∈ X, where F must satisfy all the conditions of implicit relation
(see [8]). We have to impose that (A, idX) or(B, idX) satisfy property (E.A),
since the range of idX is complete in the sense of Theorem 4.1 and (A, idX)
and (B, idX) are weakly compatible (they are commuting pairs). Adding
the validity of one of the properties

• {Byn} is a bounded sequence for every convergent sequence {yn} ⊆ X
(in case (A, idX) satisfies property (E.A)), and {Ayn} is a bounded
sequence for every convergent sequence {yn} ⊆ X (in case (B, idX)
satisfies property(E.A)),

• or condition (vi) in Corollary 4.7 with S = idX .

we deduce the existence of a unique common fixed point for A, B.
Consider F (t1, t2, ..., t6) = G(t1) − ψ(G(max{t2, t3, t4, 1

2(t5 + t6)})), where
G : R+ → R+ is continuous fort > 0 and such thatG(0) = 0, G(t) > 0,
for t > 0, andψ : R+ → R+ is upper semicontinuous for t > 0 and such
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that ψ(0) = 0 and ψ(t) < t, for t > 0.In this case, the implicit condition in
Theorem 4.1 (see Remark 4.9) can be written as

G(d(Ax,By))

≤ ψ(G(max{d(Sx, Ty), d(Ax, Sx), d(By, Ty),
1
2
(d(By, Sx)+d(Ax, Ty))})),

for all x, y ∈ X.
If S = T = idX , then we get

G(d(Ax,By))

≤ ψ(G(max{d(x, y), d(Ax, x), d(By, y),
1
2
(d(By, x) + d(Ax, y))})),

for all x, y ∈ X, which is similar to condition in Theorem 1 [8].
We check that the above defined function F satisfies the conditions of im-
plicit relation:
(F1) : F (u, 0, u, 0, 0, u) = G(u)−ψ(G(max{0, u, 0, 1

2u}) = G(u)−ψ(G(u)) ≤
0 ⇒ u = 0,since, if u > 0, then G(u) > 0 and G(u) ≤ ψ(G(u)) < G(u),
which is a contradiction.
(F2) : F (u, 0, 0, u, u, 0) = G(u)−ψ(G(max{0, 0, u, 1

2u}) = G(u)−ψ(G(u)) ≤
0 ⇒ u = 0,
(Fu) : F (u, u, 0, 0, u, u) = G(u)− ψ(G(max{u, 0, 0, u}) = G(u)− ψ(G(u)) >
0, for all u > 0.
As a particular case, we can consider G(u) =

∫ u
0 ϕ(s) ds, where ϕ ≥ 0

is Lebesgue-integrable and such that
∫ ε
0 ϕ(t)dt > 0, for every ε > 0, and

ψ(t) = kt, with 0 ≤ k < 1 (see [8]).Note that conditions (C) and (CS) are
valid for F . Next, we check the validity of (CS).Indeed, for {pn}, {cn} and
{qn} nonnegative sequences such that {pn} → l, {qn} → l, {cn} → 0, as
n →∞, and

F (pn, cn, pn, cn, 0, qn) ≤ 0, n ∈ N,

we get
G(pn) ≤ ψ

(
G

(
max

{
cn, pn, cn,

qn

2

}))
, ∀n ∈ N.

We have to check that F (l, 0, l, 0, 0, l) ≤ 0, that is,

G(l) ≤ ψ

(
G

(
max

{
0, l, 0,

1
2
l

}))
= ψ (G (l)) .

If l = 0, this inequality is reduced to 0 = G(0) ≤ ψ (G (0)) = ψ(0), which is
obviously valid.
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Suppose that l > 0. By the upper-semicontinuity of ψ at G(l) > 0, given ε >
0, there exists a neighborhood (G(l)−δ,G(l)+δ) of G(l) such that, for every
x ∈ (G(l)− δ,G(l) + δ), ψ(x) < ψ(G(l)) + ε. Since G is continuous at l > 0,
then {G (

max
{
cn, pn, cn, qn

2

})} → G(l), as n → ∞, therefore, given δ > 0,
there exists R ∈ N such that, for n ≥ R, G

(
max

{
cn, pn, cn, qn

2

}) ∈ (G(l)−
δ,G(l) + δ), and ψ

(
G

(
max

{
cn, pn, cn, qn

2

}))
< ψ(G(l)) + ε. Therefore,

G(pn) ≤ ψ
(
G

(
max

{
cn, pn, cn,

qn

2

}))
< ψ(G(l)) + ε, n ≥ R.

This proves that limsupn→∞G(pn) ≤ ψ(G(l)), that is, G(l) ≤ ψ(G(l)), and
condition (CS) is valid.

Similarly, we obtain the validity of (ĈS). It is also easy to check that
(H1) and (H2) are satisfied.

Acknowledgements: We thank the referee’s comments on the paper.
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