Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat **21:2** (2007), 11–20

COMPOSITION OPERATORS FROM BLOCH TYPE SPACES TO F(p,q,s) SPACES

Xiangling Zhu

Abstract

Suppose that φ is an analytic self-map of the unit disk, the compactness of the composition operator C_{φ} from the Bloch type space into the space F(p,q,s) is investigated.

1 Introduction

Let D be the open unit disk in the complex plane \mathbb{C} and ∂D the unit circle. Denote by H(D) the class of all functions analytic on D. An $f \in H(D)$ is said to belong to the Bloch type space, or α -Bloch space \mathcal{B}^{α} if

$$B(f) = \sup_{z \in D} (1 - |z|^2)^{\alpha} |f'(z)| < \infty.$$

Note that \mathcal{B}^{α} is a Banach space with the norm which is given by $||f||_{\mathcal{B}^{\alpha}} = |f(0)| + B(f)$. When $\alpha = 1$, $\mathcal{B} = \mathcal{B}^1$ is the well known Bloch space. Let \mathcal{B}^{α}_0 , called the little Bloch type space, denote the subspace of \mathcal{B}^{α} consisting of those $f \in \mathcal{B}^{\alpha}$ for which $\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} |f'(z)| = 0$.

The one-to-one holomorphic functions that map D onto itself have the form $\lambda \varphi_a$, where $\lambda \in \partial D$ and φ_a is the basic conformal automorphism

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B35, Secondary 30H05.

Key words and phrases. composition operator, Bloch type spaces, F(p,q,s) spaces Received: April 11, 2006

defined by $\varphi_a = \frac{a-z}{1-\overline{a}z}$ for $a \in D$. It is easy to check that the following equalities hold

$$\varphi_a \circ \varphi_a(z) = z, \quad |\varphi_a'(z)| = \frac{1 - |a|^2}{|1 - \overline{a}z|^2}, \quad 1 - |\varphi_a(z)|^2 = (1 - |z|^2)|\varphi_a'(z)|.$$

For $a \in D$, let g(z, a) be Green's function for D with logarithmic singularity at a, i.e. $g(z, a) = \log \frac{1}{|\varphi_a(z)|}$. Let $0 < p, s < \infty, -2 < q < \infty$. A function $f \in H(D)$ is said to belong to F(p, q, s) (see [14]) if

$$||f||_{p,q,s}^{p} = \sup_{a \in D} \int_{D} |f'(z)|^{p} (1 - |z|^{2})^{q} g^{s}(z, a) dA(z) < \infty,$$

and $f \in F_0(p,q,s)$ if $f \in H(D)$ and

$$\lim_{|a| \to 1} \int_D |f'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) = 0.$$

F(p,q,s) is a Banach space under the norm $||f||_{F(p,q,s)}^p = |f(0)| + ||f||_{p,q,s}^p$. F(p,q,s) is called general function space because it can get many function spaces if it takes special parameters of p,q,s. For example, $F(p,q,s) = \mathcal{B}_0^{\frac{q+2}{p}}$ and $F_0(p,q,s) = \mathcal{B}_0^{\frac{q+2}{p}}$ for s > 1; $F(p,q,s) \subset \mathcal{B}_{\frac{q+2}{p}}^{\frac{q+2}{p}}$ and $F_0(p,q,s) \subset \mathcal{B}_0^{\frac{q+2}{p}}$ for $0 < s \leq 1$; $F(2,0,s) = Q_s$ and $F_0(2,0,s) = Q_{s,0}$; F(2,0,1) = BMOA and $F_0(2,0,1) = VMOA$; If $q + s \leq -1$, then F(p,q,s) is the space of constant functions.

Let φ be an analytic self-map of D. Then the composition operator C_{φ} with symbol φ is defined by

$$C_{\varphi}f = f \circ \varphi$$

for $f \in H(D)$. Littlewood's subordination principle gives that C_{φ} is a bounded linear operator on the classical Hardy and Bergman spaces. More information about the study of composition operators can be found in [2, 16].

In [15], Zhao has characterized the boundedness and compactness of composition operators between the Bloch type spaces and the Hardy and Besov spaces. Smith and Zhao have characterized the boundedness of C_{φ} : $\mathcal{B} \to Q_p, C_{\varphi} : \mathcal{B}_0 \to Q_{p,0}$ and $C_{\varphi} : \mathcal{B} \to Q_{p,0}$ in [9]. In [11], Wulan has characterized the compactness of composition operators between the Composition Operators from Bloch Type Spaces to F(p, q, s) Spaces 13

Bloch space and the Q_K space. Some related results can be founded in [1, 4, 5, 6, 8, 12].

In this paper we study the composition operators from the Bloch type space \mathcal{B}^{α} into the space F(p, q, s). For a subarc $I \in \partial D$, let

$$S(I) = \{ r\zeta \in D : 1 - |I| < r < 1, \zeta \in I \}.$$

If $|I| \ge 1$, then we set S(I) = D. For $r \in (0, 1)$, let $D_r = \{z \in D : |\varphi(z)| > r\}$. The characteristic function of a set $E \subset D$ is denoted by I_E . Jiang and He in [3] studied the boundedness and compactness of composition operator from the Bloch type space \mathcal{B}^{α} into the space F(p, q, s). The main results in [3] can be stated as follows.

Theorem A. Let φ be an analytic self-map of D, $0 < \alpha, p, s < \infty, -2 < q < \infty$ and q + s > -1. The following statements are equivalent: (i) $C_{\varphi} : \mathcal{B}^{\alpha} \to F(p,q,s)$ is bounded; (ii) For $p \ge 2$, $C_{\varphi} : \mathcal{B}_{0}^{\alpha} \to F(p,q,s)$ is bounded; (iii) $\int |\varphi'(z)|^{p} (1 + |z|^{2})q \, \delta(z_{0}) |A(z)| \leq 1$ (1)

$$\sup_{a \in D} \int_{D} \frac{|\varphi'(z)|^{p}}{(1 - |\varphi(z)|^{2})^{p\alpha}} (1 - |z|^{2})^{q} g^{s}(z, a) dA(z) < \infty.$$
(1)

Theorem B. Let φ be an analytic self-map of D, $0 < \alpha, p, s < \infty, -2 < q < \infty$ and q + s > -1. The following statements are equivalent: (i) $C_{\varphi} : \mathcal{B}^{\alpha} \to F(p, q, s)$ is a compact operator; (ii) $C_{\varphi} : \mathcal{B}^{\alpha}_{0} \to F(p, q, s)$ is a compact operator; (iii) $\varphi \in F(p, q, s)$ and

$$\lim_{r \to 1} \sup_{I \subset \partial D} |I|^{-s} \int_{S(I)} I_{D_r} \frac{|\varphi'(z)|^p}{(1 - |\varphi(z)|^2)^{p\alpha}} (1 - |z|^2)^{q+s} dA(z) = 0.$$
(2)

The above compactness condition is very difficult to verify. In this paper, we give another characterization of the compactness of C_{φ} from Bloch type space \mathcal{B}^{α} into the space F(p, q, s).

Throughout this paper, C always denote positive constant and may be different at different occurrences.

2 Main Results and Proofs

In this section, we give the main results and the proofs of this paper by using the methods of [11]. For this purpose, we need some lemmas. The following criterion for compactness follows by standard arguments similar, for example, to those outlined in Proposition 3.11 of [2].

Lemma 1. Let φ be an analytic self-map of D, $0 < \alpha, p, s < \infty, -2 < q < \infty$ and q + s > -1. Then $C_{\varphi} : \mathcal{B}^{\alpha} \to F(p, q, s)$ is a compact operator if and only if $C_{\varphi} : \mathcal{B}^{\alpha} \to F(p, q, s)$ is bounded and for any bounded sequence (f_n) in \mathcal{B}^{α} with $(f_n) \to 0$ uniformly on compact sets as $n \to \infty$, $\|C_{\varphi}f_n\|_{F(p,q,s)} \to 0$, as $n \to \infty$.

Lemma 2. Let φ be an analytic self-map of D, $0 < \alpha, p, s < \infty, -2 < q < \infty$ and q + s > -1. If $C_{\varphi} : \mathcal{B}^{\alpha}(\mathcal{B}_{0}^{\alpha}) \to F(p, q, s)$ is a compact operator, then for any $\varepsilon > 0$ there exists a δ , $0 < \delta < 1$, such that for all f in $\mathbf{B}_{\mathcal{B}^{\alpha}}(\mathbf{B}_{\mathcal{B}_{0}^{\alpha}})$, the unit ball of $\mathcal{B}^{\alpha}(\mathcal{B}_{0}^{\alpha})$,

$$\sup_{a\in D}\int_{|\varphi(z)|>r} |(f\circ\varphi)'(z)|^p (1-|z|^2)^q g^s(z,a) dA(z) < \varepsilon$$

holds whenever $\delta < r < 1$.

Proof. We only prove the case of \mathcal{B}_0^{α} . The proof for \mathcal{B}^{α} is similar, hence we omit the details. Assume that $C_{\varphi} : \mathcal{B}_0^{\alpha} \to F(p,q,s)$ is compact. For $f \in \mathbf{B}_{\mathcal{B}_0^{\alpha}}$, let $f_t(z) = f(tz)$ for $t \in (0,1)$ and $z \in D$. Then $f_t \to f$ uniformly on compact subsets of D as $t \to 1$. Since C_{φ} is compact, then by Lemma 1 we see that $\|C_{\varphi}f_t - C_{\varphi}f\|_{p,q,s} \to 0$ as $t \to 1$. Thus, for given $\varepsilon > 0$, there is a $t \in (0,1)$ such that

$$\sup_{a \in D} \int_{D} |f'_t(\varphi(z)) - f'(\varphi(z))|^p |\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) < \varepsilon.$$

Composition Operators from Bloch Type Spaces to F(p, q, s) Spaces 15

By the triangle inequality, for $r \in (0, 1)$, we have

$$\begin{split} \sup_{a \in D} & \int_{|\varphi(z)| > r} |f'(\varphi(z))|^p |\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) \\ \leq & \sup_{a \in D} \int_{|\varphi(z)| > r} |f'_t(\varphi(z)) - f'(\phi(z))|^p |\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) \\ + & \sup_{a \in D} \int_{|\varphi(z)| > r} |f'_t(\varphi(z))|^p |\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) \\ \leq & \varepsilon + \|f'_t\|_{\infty}^p \sup_{a \in D} \int_{|\varphi(z)| > r} |\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z). \end{split}$$

Now, we prove that for given $\varepsilon > 0$ and $\|f'_t\|_{\infty}^p > 0$ there exists a $\delta \in (0, 1)$ such that if $\delta < r < 1$

$$\|f'_t\|_{\infty}^p \sup_{a \in D} \int_{|\varphi(z)| > r} |\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) < \varepsilon.$$

Let $f_n(z) = n^{\alpha-1}z^n$. it is easy to see that $f_n \in \mathcal{B}_0^{\alpha}$ and converges to zero uniformly on compact subsets of D. Since C_{φ} is a compact operator, we have $\lim_{n\to\infty} \|n^{\alpha-1}\varphi^n\|_{p,q,s} \to 0$ as $n \to \infty$. That is, for any given $\varepsilon > 0$ and $\|f'_t\|_{\infty}^p > 0$, there exists a integer N > 1 such that

$$\|f_t'\|_{\infty}^p \int_{|\varphi(z)|>r} n^{p\alpha} |\varphi(z)|^{p(n-1)} |\varphi'(z)|^p (1-|z|^2)^q g^s(z,a) dA(z) < \varepsilon, \quad (4)$$

whenever $n \ge N$. Given $r \in (0, 1)$, (4) yields

$$N^{\alpha p} r^{pN-p} \int_{|\varphi(z)| > r} |\varphi'(z)|^p (1-|z|^2)^q g^s(z,a) dA(z) < \varepsilon.$$

Taking $r = N^{-\frac{\alpha}{N-1}}$, we get

$$\|f_t'\|_\infty^p \sup_{a\in D} \int_{|\varphi(z)|>r} |\varphi'(z)|^p (1-|z|^2)^q g^s(z,a) dA(z) < \varepsilon.$$

Hence we have already proved that for any $\varepsilon > 0$ and for $f \in \mathbf{B}_{\mathcal{B}_0^{\alpha}}$, there exists a $\delta = \delta(\varepsilon, f)$ such that

$$\sup_{a \in D} \int_{|\varphi(z)| > r} |(f \circ \varphi)'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) < \varepsilon$$

holds whenever $\delta < r < 1$.

We finish the proof of Lemma 2 by showing that the $\delta = \delta(\varepsilon, f)$, in fact, is independent of $f \in \mathbf{B}_{\mathcal{B}_0^{\alpha}}$. Since $C_{\varphi}(\mathbf{B}_{\mathcal{B}_0^{\alpha}})$ is a relatively compact subset of F(p, q, s), there are a finite collection of functions f_1, f_2, \dots, f_n in $\mathbf{B}_{\mathcal{B}_0^{\alpha}}$ such that for any $\varepsilon > 0$ and $f \in \mathbf{B}_{\mathcal{B}_0^{\alpha}}$, there is a $k, k = 1, 2, \dots, n$, satisfying

$$\sup_{a \in D} \int_{D} |f'(\varphi(z)) - f'_k(\varphi(z))|^p |\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) < \varepsilon.$$

On the other hand, if $\max_{1 \le k \le n} \delta(\varepsilon, f_k) = \delta < r < 1$, we have for all $k = 1, 2, \dots, n$,

$$\sup_{a \in D} \int_{|\varphi(z)| > r} |f'_k(\varphi(z))|^p |\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) < \varepsilon.$$

By using the triangle inequality, we get

$$\sup_{a\in D}\int_{|\varphi(z)|>r}|(f\circ\varphi)'(z)|^p(1-|z|^2)^qg^s(z,a)dA(z)<\varepsilon$$

whenever $\delta < r < 1$. The proof is completed.

Lemma 3.[17] Suppose that n_k is an increasing sequence of positive integers with Hadamard gaps, that is, $n_{k+1}/n_k \ge \lambda > 1$ for all k. Let 0 .Then there is a constant <math>M > 0 depending on p and λ such that

$$M^{-1} \left(\sum_{k=1}^{N} |a_k|^2\right)^{1/2} \le \left(\frac{1}{2\pi} \int_0^{2\pi} \left|\sum_{k=1}^{N} a_k e^{in_k\theta}\right|^p d\theta\right)^{1/p} \le M \left(\sum_{k=1}^{N} |a_k|^2\right)^{1/2}$$

for any scalars a_1, \ldots, a_N and $N = 1, 2, \ldots$.

We are now ready to state and prove the main results in this section.

Theorem 1. Let φ be an analytic self-map of D, $0 < p, \alpha, s < \infty, -2 < q < \infty$ and q + s > -1. The following statements are equivalent: (i) $C_{\varphi} : \mathcal{B}^{\alpha} \to F(p,q,s)$ is a compact operator; (ii) $C_{\varphi} : \mathcal{B}^{\alpha}_{0} \to F(p,q,s)$ is a compact operator; (iii) $\varphi \in F(p,q,s)$ and

$$\lim_{r \to 1} \sup_{a \in D} \int_{|\varphi(z)| > r} \frac{|\varphi'(z)|^p}{(1 - |\varphi(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z, a) dA(z) = 0.$$
(3)

Composition Operators from Bloch Type Spaces to F(p, q, s) Spaces 17

Proof. $(i) \Rightarrow (ii)$ It is trivial since $\mathcal{B}_0^{\alpha} \subset \mathcal{B}^{\alpha}$.

 $(ii) \Rightarrow (iii)$ Suppose that $C_{\varphi} : \mathcal{B}_0^{\alpha} \to F(p,q,s)$ is compact. By choosing $f = z \in \mathcal{B}_0^{\alpha}$ we have $\varphi \in F(p,q,s)$. Next, we choose the function

$$f(z) = \sum_{k=1}^{\infty} 2^{k(\alpha-1)} z^{2^k}$$

we see that $f(z) \in \mathcal{B}^{\alpha}$ from [13]. Set $g(z) = f(z)/||f||_{\mathcal{B}^{\alpha}}$, choose a sequence $\{\lambda_n\}$ in D which converges to 1 as $n \to \infty$, and let $g_n(z) = g(\lambda_n z)$ for all $n \in \mathbb{N}$. For $0 \leq \theta \leq 2\pi$, set $g_{n,\theta}(z) = g_n(e^{i\theta}z)$. It is easy to see that $g_{n,\theta} \in \mathbf{B}_{\mathcal{B}^{\alpha}_0}$. Replace f by $g_{n,\theta}$ in Lemma 2 and then integrate against $d\theta$, by Fubini's Theorem and Lemma 3 we obtain

$$\varepsilon \geq \frac{1}{2\pi} \int_{|\varphi(z)| > r} \left(\int_{0}^{2\pi} |g_{n}'(e^{i\theta}\varphi(z))|^{p} d\theta \right) |\varphi'(z)|^{p} (1 - |z|^{2})^{q} g^{s}(z, a) dA(z)$$

$$\geq C \int_{|\varphi(z)| > r} \left(\sum_{k=1}^{\infty} 2^{2\alpha k} |\lambda_{n}\varphi(z)|^{2(2^{k}-1)} \right)^{p/2} |\lambda_{n}\varphi'(z)|^{p} (1 - |z|^{2})^{q} g^{s}(z, a) dA(z).$$
(4)

Notice that (see [3] or [15])

$$\sum_{k=1}^{\infty} 2^{2\alpha k} |\lambda_n \varphi(z)|^{2(2^k - 1)} > \frac{C(\alpha)}{(1 - |\lambda_n \varphi(z)|^2)^{2\alpha}}.$$
(5)

Here $C(\alpha)$ is only depend on α . Therefore, for $\delta < r < 1$ and for sufficient large n, (4) and (5) give

$$\sup_{a \in D} \int_{|\varphi(z)| > r} \frac{|\lambda_n \varphi'(z)|^p}{(1 - |\lambda_n \varphi(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z, a) dA(z) < C\varepsilon.$$

By Fatou's Lemma we obtain

$$\lim_{r \to 1} \sup_{a \in D} \int_{|\varphi(z)| > r} \frac{|\varphi'(z)|^p}{(1 - |\varphi(z)|^2)^{p\alpha}} (1 - |z|^2)^q g^s(z, a) dA(z) = 0.$$

 $(iii) \Rightarrow (i)$ Suppose that $\varphi \in F(p,q,s)$ and (3) holds. Then it is easy to check that $C_{\varphi} : \mathcal{B}^{\alpha} \to F(p,q,s)$ is bounded. Let $\{f_n\} \subset \mathbf{B}_{\mathcal{B}_0^{\alpha}}$. We only

need to show that $\{C_{\varphi}f_n\}$ has a subsequence that converges in F(p,q,s). Since $\mathbf{B}_{\mathcal{B}_0^{\alpha}}$ is a normal family, by passing to a subsequence, we may assume, without loss of generality, that $\{f_n\}$ converges to 0 uniformly on compact subsets of D. By the Cauchy's estimate, we see that $\{f'_n\}$ also converges to 0 uniformly on compact subsets of D. We must show that $\{C_{\varphi}f_n\}$ converges to 0 in the topology of the norm of $\|\cdot\|_{F(p,q,s)}$. Given $\varepsilon \in (0,1)$, by (3), there is an $r \in (0,1)$ such that for all the functions f_n and all $a \in D$,

$$\int_{|\varphi(z)|>r} |f'_n(\varphi(z))\varphi'(z)|^p (1-|z|^2)^q g^s(z,a) dA(z) < \varepsilon.$$
(6)

Since $D_r = \{z \in D : |z| \le r\}$ is a compact subset of D, $\{f'_n\}$ also converges to 0 uniformly on D_r . Therefore, there exists an integer N > 1 such that as $n \ge N$,

$$\int_{|\varphi(z)| \le r} |f'_n(\varphi(z))\varphi'(z)|^p (1 - |z|^2)^q g^s(z, a) dA(z) < \varepsilon \|\varphi\|_{p,q,s}^p.$$
(7)

Therefore, by (6) and (7),

$$\int_{D} |f'_{n}(\varphi(z))\varphi'(z)|^{p} (1-|z|^{2})^{q} g^{s}(z,a) dA(z) < \varepsilon (1+\|\varphi\|_{p,q,s}^{2})$$

when $n \geq N$. That is, $\|C_{\varphi}f_n\|_{p,q,s} \to 0$ as $n \to \infty$. Therefore $\|C_{\varphi}f_n\|_{F(p,q,s)} \to 0$ as $n \to \infty$. By Lemma 1, we see that $C_{\varphi} : \mathcal{B}^{\alpha} \to F(p,q,s)$ is a compact operator.

Corollary 1. Let φ be an analytic self-map of D. Then the following statements are equivalent:

(i) $C_{\varphi} : \mathcal{B} \to \mathcal{B}$ is a compact operator; (ii) $C_{\varphi} : \mathcal{B}_0 \to \mathcal{B}$ is a compact operator; (iii) $\varphi \in \mathcal{B}$ and

$$\lim_{r \to 1} \sup_{a \in D} \int_{|\varphi(z)| > r} \frac{|\varphi'(z)|^p}{(1 - |\varphi(z)|^2)^p} (1 - |z|^2)^{p-2} g^s(z, a) dA(z) = 0$$

for all p > 0 and all s > 1;

(iv) $\varphi \in \mathcal{B}$ and

$$\lim_{r \to 1} \sup_{a \in D} \int_{|\varphi(z)| > r} \frac{|\varphi'(z)|^p}{(1 - |\varphi(z)|^2)^p} (1 - |z|^2)^{p-2} g^s(z, a) dA(z) = 0$$

Composition Operators from Bloch Type Spaces to F(p,q,s) Spaces 19

for each p > 0 and each s > 1.

Proof. Since $\mathcal{B} = F(p, p-2, s)$ for any p > 0 and any s > 1 (see Theorem 1.3 in [14]), the result is a direct consequence of Theorem 1.

Remark 1. The compactness of composition operator on Bloch space was characterized in [7]. In [10], Tjani proved that $C_{\varphi} : \mathcal{B} \to \mathcal{B}$ is compact if and only if $\lim_{|a|\to 1} \|C_{\varphi}\varphi_a\|_{\mathcal{B}} = 0$. Another related result can be found in [11].

Remark 2. From the proof of Theorem 1 and the proof of Theorem 1.1 in [3], we find that by using Lemma 3, we can remove the restrict condition $p \ge 2$ in Theorem A, i.e. $p \ge 2$ in Theorem 1.1 in [3].

References

- P. S. Bourdon, J. A. Cima and A. L. Matheson, Compact composition operators on BMOA, Trans. Amer. Math. Soc. 351(6), 2183-2196(1999).
- [2] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.
- [3] L. Jiang and Y. He, Composition operators from \mathcal{B}^{α} to F(p,q,s), Acta Math. Scientia, **23B**(2), 252-260(2003).
- [4] S. Li, Composition operator on Q_p spaces, Georgia Math. J. **12**(3), 505-514(2005).
- [5] S. Li and H. Wulan, Composition operators on Q_K spaces, J. Math. Anal. Appl. **327**, 948-958(2007).
- [6] Z. Lou, Composition operators on Q_p spaces, J. Austral. Math. Soc. **70**, 161-188(2001).

- [7] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (7), 2679-2687(1995).
- [8] S. Makhmutov and M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, Bull. Austral. Math. Soc. 62, 1-19(2000).
- [9] W. Smith and R. Zhao, Composition operators mapping into the Q_p spaces, Analysis. 17, 239-263(1997).
- [10] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355(11), 4683-4698(2003).
- [11] H. Wulan, Compactness of the composition operators from the Bloch space \mathcal{B} to Q_K spaces, Acta Math. Sinica, **21**(6), 1415-1424(2005).
- [12] K. J. Wirths and J. Xiao, Global integral criteria for composition operators, J. Math. Anal. Appl. 269, 702-715(2002).
- [13] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28, 31-36(1980).
- [14] R. Zhao, On a general family of function spaces, Ann Acad Sci Fenn Diss. 105(1996).
- [15] R. Zhao, Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl. 233, 749-766(1999).
- [16] K. Zhu, Operator Theory on Function Spaces, Marcel Dekker, Inc. Pure and Applied Mathematics 139, New York and Basel, 1990.
- [17] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.

Department of Mathematics, Shantou University, Shantou, 515063, GuangDong, China Department of Mathematics, Jiaying University, Meizhou, 514015, GuangDong, China *E-mail*: jyuzxl@163.com