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INFINITESIMAL DEFORMATIONS OF BASIC
TENSOR IN GENERALIZED RIEMANNIAN SPACE

L. S. Velimirović, S. M. Minčić and M. S. Stanković

Abstract. At the beginning of the present work the basic facts on gener-
alized Riemannian space (GRN ) in the sense of Eisenhart’s definition [Eis]
and also on infinitesimal deformations of a space are given. We study the Lie
derivatives and infinitesimal deformations of basic covariant and contravari-
ant tensor at GRN .

1. Introduction

1.0. At the beginning we are giving basic information on generalized
Riemannian spaces and on infinitesimal deformations of a space.

1.1. A generalized Riemannian space GRN at the sense of Eisenhart’s
definition [Eis] is a differentiable manifold, endowed with nonsymmetric basic
tensor gij(x1, . . . , xN ), where xi are local coordinates. So, generally we have

(1.1) gij(x) 6= gji(x).

The symmetric, respectively antisymmetric part of the basic tensor are

(1.2 a, b) hij =
1
2
(gij + gji), kij =

1
2
(gij − gji),
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from where it follows that

(1.3) gij = hij + kij .

For the lowering and raising of indices in GRN one uses the tensor hij

respectively hij , where

(1.4) (hij) = (hij)−1 (det(hij) 6= 0).

Christoffel symbols at GRN are

(1.5 a, b) Γi.jk =
1
2
(gji,k − gjk,i + gik,j), Γi

jk = hipΓp.jk,

where, for example, gji,k = ∂gji/∂xk. Based on (1.1) the non-symmetry of
Christoffel symbols with respect to j, k at (1.5) follows. The symbols Γi

jk

are connection coefficients at GRN .
By a reason of non-symmetry of the connection, one can use in GRN four

kinds of covariant derivatives of a tensor. For example:

(1.6a− d) tij |
1
2
3
4

m = tij,m + Γi
pm
mp
pm

mp

tpj − Γp
jm
mj

mj

jm

tip

1.2. Basic facts on infinitesimal deformations and their expressions by Lie
derivative one can find, e.g., at [Ya,Ya1,St,Sch,MVS,MVS1].
Definition 1.1. A transformation f : GRN → GRN : x = (x1, . . . , xN ) ≡
(xi) → x̄ = (x̄1, . . . , x̄N ) ≡ (x̄i), where

(1.7) x̄i = xi + zi(xj)ε, i, j = 1, . . . , N,

ε being an infinitesimal, is called infinitesimal deformation of a space
GRN , determined by the vector field z = (zi), which is called a field of
infinitesimal deformations (1.7).

We denote with (i) local coordinate system in which the point x is en-
dowed with coordinates xi, and the point x̄ with the coordinates x̄i. We will
also introduce a new coordinate system (i′), corresponding to the point
x = (xi) new coordinates

(1.8) xi′ = x̄i,
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i.e. as new coordinates xi′ of the point x = (xi) we choose old coordinates
(at the system (i)) of the point x̄ = (x̄i). Namely, at the system (i′) is
x = (xi′) =

(1.8)
(x̄i), where =

(1.8)
denotes ”equal according to (1.8)”.

Let us consider a geometric object A with respect to the system (i) at
the point x = (xi) ∈ GRN , denoting this with A(i, x).

Definition 1.2. The point x̄ is said to be deformed point of the point x,
if (1.7) holds. Geometric object Ā(i, x) is deformed object A(i, x) with
respect to deformation (1.7), if its value at system (i′), at the point x is
equal to the value of the object A at the system (i) at the point x̄, i.e. if

(1.9) Ā(i′, x) = A(i, x̄).

Definition 1.3. The magnitude DA, the difference between deformed ob-
ject Ā and initial object A at the same coordinate system and at the same
point with respect to (1.7), i.e.

(1.10) DA = Ā(i, x)−A(i, x),

is called Lie difference (Lie differential), and the magnitude

(1.11) LzA = lim
ε→0

DA
ε

= lim
ε→0

Ā(i, x)−A(i, x)
ε

is Lie derivative of geometric object A(i, x) with respect to the vector field
z = (zi(xj)).

Using the relation (1.10), for deformed object Ā(i, x) we have

(1.12) Ā(i, x) = A(i, x) +DA,

and thus we can express Ā, finding previously DA. The known main cases
are:

According to (1.10) we have Dxi = x̄i−xi, i.e. for the coordinates we have

(1.13) Dxi = zi(xj)ε,

from where

(1.13′) Lzx
i = zi(xj).
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For the scalar function ϕ(x) ≡ ϕ(x1, . . . , xN ) we have

(1.14) Dϕ(x) = ϕ,pz
p(x)ε = Lzϕ(x)ε, (ϕ,p = ∂ϕ/∂xp),

i.e. Lie derivative of the scalar function is derivative of this function in
direction of the vector field z.

For a tensor of the kind (u, v) we get

(1.15)
Dti1...iu

j1...jv
= [ti1...iu

j1...jv,pz
p −

u∑
α=1

ziα
,p

(
p

iα

)
ti1...iu
j1...jv

+
v∑

β=1

zp
,jβ

(
jβ

p

)
ti1...iu
j1...jv

]ε

= Lzt
i1...iu
j1...jv

ε,

where we denoted

(1.16)
(

p

iα

)
ti1...iu
j1...jv

= t
i1...iα−1piα+1...iu

j1...jv
,

(
jβ

p

)
ti1...iu
j1...jv

= ti1...iu
j1...jβ−1pjβ+1...jv

.

For the vector dxi we have

(1.17) D(dxi) = Lz(dxi) = 0.

In the same way, as for the tensors, for the connection coefficients we
have

(1.18) DLi
jk = (Li

jk,pz
p + zi

,jk − zi
,pL

p
jk + zp

,jL
i
pk + zp

,kLi
jp)ε = LzL

i
jkε.

From (1.11) we have

(1.19) DA = εLzA,

and, for study infinitesimal deformations of geometric objects, it is enough
to study their Lie derivatives, and that is what we are doing in the present
work.
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2. Lie derivative of the basic tensor

2.1. Based on the equations (2.12) at [VMS], for the Lie derivative of a
tensor ti1...iu

j1...jv
we have

(2.1) Lzt
i1...iu
j1...jv

= ti1...iu

j1...jv |
λ

pz
p −

u∑
α=1

ziα

|
µ
p

(
p

iα

)
ti1...iu
j1...jv

+
v∑

β=1

zp
|
ν
jβ

(
jβ

p

)
ti1...iu
j1...jv

,

where (λ, µ, ν) ∈ {(1, 2, 2), (2, 1, 1), (3, 4, 3), (4, 3, 4)}. By applying to the
tensor gij one obtains two cases

Lzgij = gij |
1
pz

p + zp
|
2
igpj + zp

|
2
jgip,

Lzgij = gij |
2
pz

p + zp
|
1
igpj + zp

|
1
jgip,

because the third case reduces to the second and the fourth case reduces to
the first case. On account of

(2.2) hij |
θ

p = 0, θ = 1, 2,

the previous equations become

(2.3a) Lzgij = kij |
1
pz

p + zi|
2
j + zj |

2
i + zp

|
2
ikpj + zp

|
2
jkip,

(2.3b) Lzgij = kij |
2
pz

p + zi|
1
j + zj |

1
i + zp

|
1
ikpj + zp

|
1
jkip.

In the case of Riemannian space RN (gij = gji = hij , kij = 0), we obtain
the known equation

(2.4) Lzgij = zi;j + zj;i,

where by ; is denoted covariant derivative with respect to Christoffel symbols
at RN . From here it follows that, forming at GRN by hij (symmetric part
of gij) Christoffel symbols Γ

0
i.jk, Γ

0

i
jk, with respect to (1.5), we obtain a

corresponding RN , and, based on (2.4):

(2.5) Lzhij = zi;j + zj;i,

Based on exposed the following theorem is valid.
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Theorem 2.1. If kij is antisymmetric part of the basic tensor gij of the
space GRN and the covariant derivatives are defined by virtue of (1.6), then
for Lie derivatives are in the force equations (2.3), where z(xi) is the infin-
itesimal deformations vector field (1.7). For the symmetric part hij of the
basic tensor is valid (2.5), where the covariant derivative is defined by virtue
of hij.

2.2. We shall examine now the Lie derivative of the tensor gij , where

(2.6) gij = hiphjqgpq.

Let us firstly determine Lzh
ij . From (1.4) is

(2.7) hiphpj = δi
j ,

herefrom, using properties of the Lie derivatives:

(Lzh
ip)hpj + hipLzhpj = 0 ⇒ (Lzh

ip)hpj = −hip(Lzhpj).

From here, composing with hjq and applying (2.7):

(2.8) Lzh
ij = −hiphjq(Lzhpq).

For the non symmetric tensor gij based on (2.6), we obtain

Lzg
ij = (Lzh

ip)hjqgpq + hip(Lzh
jq)gpq + hiphjq(Lzgpq)

=
(2.8)

− hirhps(Lzhrs)hjqgpq − hiphjrhqs(Lzhrs)gpq + hiphjq(Lzgpq)

=− hir(Lzhrs)gsj − hjrgis(Lzhrs) + hiphjq(Lzgpq),

where e.g., =
(2.8)

signifies: equal on the base of (2.8). Finally, the previous

equation can be written in the form:

(2.9) Lzg
ij = −(hipgqj + hjpgiq)Lzhpq + hiphjqLzgpq.

Thus, we have

Theorem 2.2. The Lie derivative of the tensor gij, defined with (2.6), is
given by the equation (2.9), where hij is the symmetric part of the basic
tensor gij of the generalized Riemannian space GRN , and hij is defined by
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(1.4). For a symmetric gij(gij = hij = hji), the equation (2.9) reduce to
(2.8).

2.3. We shall express Lzgij and Lzg
ij by virtue of covariant derivatives

formed with respect of Γ
0

i
jk. Summing the equations (2.3), we get

2Lzgij = (kij |
1
p + kij |

2
p)zp + (zi|

1
j + zi|

2
j) + (zj |

1
i + zj |

2
i)

+ (zp
|
1
i + zp

|
2
i)kpj + (zp

|
1
j + zp

|
2
j)kip.

Summing covariant derivatives of the first and the second kind, one ob-
tains a covariant derivative of the same tensor in relation to the symmetric
connection Γ

0

i
jk. So, from the previous equation we obtain the equation

(2.10) Lzgij = kij;pz
p + zi;j + zj;i + zp

;ikpj + zp
;jkip,

which is of the form (2.3).
By substitution at (2.9) with respect to (2.5) and (2.10), or by direct use

of (2.1), we obtain

(2.11) Lzg
ij = kij

;pzp − zi
;pg

pj − zj
;pg

ip.

Theorem 2.3. Using covariant derivatives with respect to symmetric part
Γ
0

i
jk of the second kind Cristoffel symbols, Lie derivative of the basic tensor

gij is given by (2.10), and the Lie derivative of the tensor gij, defined in
(2.6), is given by (2.11), where kij is antisymmetric part of gij.

References
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