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ON GREEN FUNCTION FOR THE FREE PARTICLE

D. Dimitrijević, G. S. Djordjević and Lj. Nešić

Abstract

Application of the p-adic analysis and Green function in relativistic
quantum theory is considered. Integrability of the free relativistic par-
ticle model is discussed. A convenient gauge is fixed. The Green func-
tion, as a corresponding propagator, are calculated in 4-dimensional
p-adic Minkowski space. For this model, detailed calculation is per-
formed for all three different cases: p ≡ 1(mod)4, p ≡ 3(mod)4 and
p = 2.

1 Introduction

p-Adic numbers, introduced by Kurt Hansel at the end of 19th century, and
p-adic analysis, have a quite long history and reach bibliography devoted to
investigation and application of this field of mathematics. During the last
decades this, at least at the beginning pretty exotic, part of pure number
theory has found its place in surprisingly many different fields of science and
technology. Maybe the best guide to a reader interested in this topic would
be the monography [1], even more than ten years old one.

In this paper we are mostly interested in application of p-adic mathe-
matics in theoretical physics. More precisely, our goal is to calculate Green
function for p-adic free relativistic particle (FRP), motivated by, so called,
Hartle-Hawking (HH) approach to quantum cosmology. Namely, most of
the p-adic physicists believe that the most important applications of p-adic
analysis concerns the Planck scale physics and non-Archimedean structure
at very small space-time distances.
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Foundations of p-adic quantum mechanics [2] and quantum cosmology
[3] were worthwhile achievements in attempt of deeper understanding the
fundamental processes at fundamental-Planck distance. The adelic connec-
tion between ordinary and p-adic quantum theory has been proposed for
strings [4], quantum mechanics [5] and quantum cosmology [6].

Dynamics of some simple non-relativistic models is considered in a few
papers: free particle and particle in constant external field [7], harmonic
oscillator with constant [5] and time-dependent frequency [8]. Also, de Sitter
and other interesting cosmological models have been considered [6].

In all that cases, functional integral approach and the corresponding
Gauss integrals have been used [9]. As usually, while developing a theory,
as (p-adic) quantum cosmology, it is very convenient to study some techni-
cally simpler cases. The FRP is formally used as one very instructive and
integrable model. Although usual action for the relativistic particle is non-
linear, as in the real case [10], that system may be treated like a system with
quadratic constraint. This paper is concerned about the p-adic aspects of
such system. For a bit different and interesting approaches to p-adic Green
function and p-adic free particle see [11].

The paper is organized as follows. After the Introduction we briefly
recapitulate basic facts about p-adics. Section 3 is devoted to classical and
quantum FRP over real numbers. In Section 4 p-adic propagator (Green
function) for the FRP is introduced and studied in details. The main results
are formulated in the form of three propositions.

2 p-Adic Mathematics

In considering p-adic numbers it is suitable to begin with the field of rational
numbers Q, as the simplest field of numbers of characteristics 0. Any rational
number can be expanded into one of two forms of infinite series [1]

−∞∑

i

ai10i, ai = 0, ..., 9, (1)

or
+∞∑

i=m

bip
i, bi = 0, ..., p− 1, (2)

where n and m are some integers, and p is a prime number. The above series
(1) and (2) are convergent in respect to standard absolute value | |∞ and
p-adic norm | |p, respectively. From physical point of view, it is important
that Q contains all results of physical measurements.
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The completion of the field of rational numbers Q with respect to the
standard norm | |∞ leads to the field of real numbers R ≡ Q∞ (expression
(1)). According to the Ostrowski theorem, besides absolute value and p-adic
norms | |p there are no other non-equivalent and nontrivial norms on Q. The
completion of Q with respect to the p-adic norm leads to the p-adic number
field Qp (expression (2)). The p-adic norm is nonarchimedean (ultrametric)
one, i.e. |x + y|p ≤ max(|x|p, |y|p).

Generally speaking, there are two analyses over Qp, ϕ : Qp → Qp and ψ :
Qp → C. In the case of mapping ψ : Qp → C, there is no standard derivative,
and some types of pseudodifferential operators have been introduced [1, 12].
However, it turns out that there is a well defined integral with the Haar
measure. In the following, we will use the integral formula

∫

Sγ

χp(ξy)dy =





pγ
(
1− p−1

)
, if |ξ|p ≤ p−γ

−pγ−1, if |ξ|p = p−γ+1

0, if |ξ|p ≥ p−γ+2.
(3)

where χp(u) = exp(2πiup) is a p-adic additive character. Here, up denotes
the fractional part of u ∈ Qp. Recall that in the real case one has χ∞(x) =
exp(−2πix). Also, let us state the notation for the ring of p-adic integers,
p-adic circle and disc, respectively:

Zp = {x ∈ Qp : |x|p ≤ 1} (4)

Sγ(a) = {x ∈ Qp : |x− a|p = pγ}, (5)

Bγ(a) = {x ∈ Qp : |x− a|p ≤ pγ}. (6)

Even very interesting topics, adeles [13] and their application to physics
[6, 9] will not be considered here.

3 Classical and Quantum Free Relativistic Parti-
cle

Usual action for the FRP, in the flat configuration space, is

S = −mc

τ2∫

τ1

dτ
√

ẋµẋνηµν (7)

(a dot denotes a derivative of 4-vector xµ with respect to τ , ηµν is the
usual Minkowski metric with signature (−,+,+,+) and µ, ν ∈ {0, 1, 2, 3}).
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Speed of light in vacuum is denoted by c and m denotes particle mass. The
quantity τ parameterizes the wordline, with the boundary condition

x(τ1) = x1, x(τ2) = x2. (8)

In using action (7) for the path integral quantization we meet with the
problems [10]. First of all, there is the practical problem of evaluating a
path integral which is not Gaussian.

However, FRP may be treated as a system with constraint [10] H =
ηµνkµkν + m2c2 = k2 + m2c2 = 0, (kµ is the 4-momentum, kµ = (E/c,~k),
E is a energy of particle and ~k is a 3-momentum). This Hamiltonian after
introduction Lagrange multiplier N , is getting the canonical form

Hc = N(k2 + m2c2). (9)

The canonical Hamiltonian (9) leads to the Lagrangian

L = ẋαkα −Hc, (10)

where ẋα = ∂Hc
∂kα = 2Nηµαkµ, (kα = ẋµηµα

2N , kα = ẋα
2N ). For the action we

gain

S =

τ2∫

τ1

dτ

[
ẋ2

4N
−m2c2N

]
. (11)

The classical trajectory, as a solution of Euler-Lagrange equation d
dt

∂L
∂ẋ −

∂L
∂x = 0, with the boundary condition (8)

x̄ =
x2 − x1

τ2 − τ1
τ +

x1τ2 − x2τ1

τ2 − τ1
, (12)

leads to the classical action

S̄ =
(x2 − x1)2

4N(τ2 − τ1)
−m2c2N(τ2 − τ1). (13)

In quantization by the functional (Feynman) approach, first of all, we
have to calculate the corresponding kernel of the operator of evolution U for
the considered system. For the class of reparametrization-invariant systems,
in the standard case, it can be presented as a functional part [10] of the

G(xj |xi) =
∫

dN(τj − τi)
∫
DkDxei

R τj
τi

τ [kẋ−NH]. (14)
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After the usual redefinition T = N(τj − τi) we gain

G(xj |xi) =
∫

dTK(xj , T |xi, 0) (15)

where G(xj |xi) is the propagator or Green function and K(xj , T |xi, 0) is
above mentioned kernel.

Let us note that the Green function G(xj |xi) for the xj = x and xi = 0,
in the quantum cosmology is the HH wave function of the universe (see
[3]). The main results concerning the T integration in the standard case are
presented in the Ref. 10.

4 p-Adic Propagator (Green function)

In the p-adic case, the above expressions from (7) to (15) are valid too. Since
classical action (13) may be presented in the form

S̄ = −(x0
2 − x0

1)
2

4T
− m2c2T

4
+

(x1
2 − x1

1)
2

4T
− m2c2T

4

+
(x2

2 − x2
1)

2

4T
− m2c2T

4
+

(x3
2 − x3

1)
2

4T
− m2c2T

4
= S̄0 + S̄1 + S̄2 + S̄3 (16)

corresponding p-adic kernel is [9]

Kp(xj , Tj |xi, Ti) =
λ2

p (4h(Tj − Ti))

|2h(Tj − Ti)|2p
χp

(
−1

h

(xj − xi)2

4(Tj − Ti)
+

m2c2

h
(Tj − Ti)

)
,

(17)
where λp(u) is an arithmetic complex valued function [1].

Remind that Kp(xj , Tj |xi, Ti) is the kernel of the p-adic evolution oper-
ator which is defined by its action on the wave function ψ(xj)

Up(T )ψp(xj) =
∫

Qp

Kp(xj , Tj |xi, Ti)ψp(xi)dxi. (18)

Fixing the gauge Ṅ = 0, we will calculate p-adic propagator as

Gp(xj |xi) =
∫

|hT |p≤1

dTKp(xj , T |xi, 0), (19)
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i.e.,

Gp(xj |xi) =
∫

|hT |p≤1

dT
λ2

p(4hT )
|2hT |2p

χp

(
−(xj − xi)2

4hT
+

m2c2

h
T

)
. (20)

The integration is performed over the p-adic ball, |hT |p ≤ 1.
The nature of integration force us to divide integration in three different

cases: 1) p ≡ 1(mod)4, λ2
p(a) = 1, p ≡ 3(mod)4, λ2

p(a) = ±1, 3) p =
2, λ2

p(a) = (−1)a1i.

PROPOSITION 1. For p ≡ 1(mod)4, i.e. λ2
p(a) = 1 corresponding p-adic

Green function reads

Gp(xj |xi) =

{
− 1

p|h|p , if |(xj − xi)2|p ≤ p

0, if |(xj − xi)2|p > p.
(21)

To prove the above proposition, we introduce following changes

hT = z ⇒ dz = |h|pdT ; z =
1
y
⇒ dz =

dy

|y|2p
⇒ dT =

1
|h|p

dy

|y|2p
. (22)

Then, the Green function can be evaluated as (with q2 = (xj−xi)
2

4 )

Gp(xj |xi) =
1
|h|p

∞∑

γ=0

∫

Sγ

χp(−q2y)dy. (23)

Let |q2|p ≥ p2, than |q2|p ≥ p−γ+2, ∀γ ≥ 0, γ ∈ N + {0}. In respect to
the third line in (3), it follows

∞∑

γ=0

∫

Sγ

χp(−q2y)dy = 0 ⇒ Gp(xj |xi) = 0, for |(xj − xi)2|p ≥ p2. (24)

Let now |q2|p = pδ, δ ∈ Z\N
∞∑

γ=0

∫

Sγ

χp(−q2y)dy =
−δ∑

γ=0

pγ

(
1− 1

p

)
− p|δ| = −1

p
. (25)
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That means

Gp(xj |xi) = −1
p

1
|h|p , for |(xj − xi)2|p ≤ pδ, δ ∈ Z\N . (26)

On the light cone e.g. q2 = 0
∞∑

γ=0

∫

Sγ

1dy =
∞∑

γ=0

pγ

(
1− 1

p

)
=

1
p

(
p− 1 + p(p− 1) + p2(p− 1)...

)
= −1

p
.

(27)
All these results, in fact, are represented in the compact form (21).

PROPOSITION 2. For p ≡ 3(mod)4, i.e, λ2
p(a) = ±1, corresponding p-adic

Green function reads

Gp(xj |xi)=
1
|h|p





0, if |(xj − xi)2|p ≥ p2,
−p−1, if |(xj − xi)2|p = p,

(2− p−1), if |(xj − xi)2|p = 1,
1

p+1

(
p−1

p +(−1)δ2p|δ|+1
)
, if |(xj−xi)2|p =pδ,δ<0,

−∞, if |(xj − xi)2|p = 0.
(28)

The most important difference in respect to p ≡ 1(mod)4 is

λ2
p(4hT ) = λ2

p(z) = λ2
p(y) = (−1)γ , |y|p = pγ . (29)

Therefore, we calculate Green function as sum of two parts

Gp(xj |xi) = |h|−1
p




+∞∑

γ=0

(−1)2γ

∫

S2γ

dyχp

(−q2y
)

+
+∞∑

γ=0

(−1)2γ+1

∫

S2γ+1

dyχp

(−q2y
)

 .

(30)
Let |q2|p = pδ, for δ ≥ 2. Follows

Gp(xj |xi) = 0 for |xj − xi|p ≥ p. (31)

For δ = 1, Gp(xj |xi) = − 1
p|h|p , and for δ = 0, Gp(xj |xi) = 1

|h|p (2− 1
p).

For odd δ, δ < 0

Gp(xj |xi) = |h|−1
p

+∞∑

γ=0

(−1)γ

∫

Sγ

dyχp

(−q2y
)

= |h|−1
p (p + 1)−1

(
p− 1

p
− 2p|δ|+1

)
. (32)
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For even δ, δ < 0, one has

Gp(xj |xi) = |h|−1
p

−δ∑

γ=0

(−1)γpγ(1− p−1)− p−δ(−1)−δ+1 (33)

= |h|−1
p (p + 1)−1

(
p− 1

p
+ 2p|δ|+1

)
. (34)

Finally, on the light cone we find

Gp(xj |xi) = −(p− 1)2

p|h|−1
p

+∞∑

γ=0

p2γ = −∞. (35)

Collecting all above results we get form given in the PROPOSITION 2.

PROPOSITION 3. In the case p = 2 (unique even prime number), i.e
λ2

p(a) = (−1)a1i, Green function for FRP has the following form

G2(xj |xi) =

{
0, if q2 = 0 or |(xj − xi)2|2 ≥ 1,

(−1)q2
1

|h(xj−xi)2|2 , if q2 6= 0 and |(xj − xi)2|2 ≤ 1
2 .

(36)

To prove above proposition we start with

G2(xj |xi) = |2h|−1
2

∫

|y|2≥2

dyλ2
2(y)χp

(−q2y
)
. (37)

For y = 2−γ(1 + 2y1 + ...), γ ∈ N, λ2
2(y) = (−1)y1i, and

G2(xj |xi) = |2h|−1
2

∞∑

γ=1


i

∫

Sγ,y1=0

dyχp(−q2y)− i

∫

Sγ,y1=1

dyχp(−q2y)


 .

(38)
By the introducing I0 and I1 [1]

I0 =
∫

Sγ,y1=0

dyχp(−q2y), and I1 =
∫

Sγ,y1=1

dyχp(−q2y). (39)

we finaly calculate
1)If q2 = 0, I0 = I1 ⇒ G2(xj |xi) = 0.
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2)If |q2|2 = 2δ, δ ∈ Z, and |y|2 ≤ 2−δ, I0 = I1.
3)If |q2|2 = 2δ, and |y|2 = 2−δ+1, {q2y}2 = 1

2 , I0 = I1.

4)If |q2|2 = 2δ, and |y|2 = 1
2δ−2 , {q2y}2 = 1

4+ 1
2(y1+q2

1), I0 = −i(−1)q2
1

2δ =−I1.
5)If |q2|2 = 2δ, and |y|2 ≥ 2−δ+3, I0 = I1.
We have to keep in mind that the range of integration is γ ≥ 1, so for
unique nonsingular case 4) we have −δ + 2 ≥ 1, i.e. δ ≤ 1. It corresponds
|q2|2 = | (xj−xi)

2

4 |2 ≤ 2 ⇔ |(xj − xi)2|2 ≤ 1
2 . Comparing 1) to 5) with (36)

we finish the proof of the PROPOSITION 3.
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