Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 21:2 (2007), 261-266

ALMOST CONVERGENCE AND SOME MATRIX TRANSFORMATIONS

Qamaruddin and S. A. Mohiuddine

Abstract

In this paper we characterize the matrix classes $\left(l(p, u), f_{\infty}\right)$ and $(l(p, u), f)$ which generalize the matrix classes given by Mursaleen [6].

1. Introduction

Let l_{∞} and c be the Banach spaces of bounded and convergent sequences $x=\left(x_{k}\right)$ respectively with the usual norm $\|x\|=\sup \left|x_{k}\right|$. A continuous linear functional ϕ on l_{∞} is called a Banach limit [1] if (i) $\phi(x) \geq 0$ for $x=\left(x_{k}\right), x_{k} \geq 0$ for every k, (ii) $\phi\left(x_{k+1}\right)=\phi\left(x_{k}\right)$, and (iii) $\phi(e)=1$ where $e=(1,1,1, \ldots$.$) . A sequence x \in l_{\infty}$ is said to be almost convergent to the value L if all of its Banach limits equal to L (see [3]). We denote the set of all almost convergent sequences by f, i.e.

$$
f:=\left\{x \in l_{\infty}: \lim _{m} t_{m n}(x)=L, \text { uniformly in } n\right\}
$$

where

$$
t_{m n}(x)=\frac{1}{m+1} \sum_{k=0}^{m} x_{k+n} \quad, t_{-1, n}=0
$$

and

$$
L=f-\lim x
$$

Nanda [7] has defined a new set of sequences as follows

$$
f_{\infty}:=\left\{x \in l_{\infty}: \sup \left|t_{m n}(x)\right|<\infty\right\}
$$

we call f_{∞} the set of all almost bounded sequences.
Bullet and Cakar [2] have defined a sequence space $l(p, s)$ and characterized the matrix classes $\left(l(p, s), l_{\infty}\right)$ and $(l(p, s), c)$.

In this paper we characterize the matrix classes $\left(l(p, u), l_{\infty}\right)$ and $(l(p, u), f)$, where $l(p, u)$ is more general than $l(p, s)$.

Let $p=\left(p_{k}\right)$ be a sequence of real numbers with $p_{k}>0$. The space $l(p, s)$ is defined as (see [2])

$$
l(p, s):=\left\{x: \sum_{k} k^{-s}\left|x_{k}\right|^{p_{k}}<\infty\right\} .
$$

Let $u=\left(u_{k}\right)$ be a sequence of real numbers such that $u_{k} \neq 0(k=1$, $2, \ldots$.$) and u^{-1}=\left(u_{k}^{-1}\right)$.

The space $l(p, u)$ is defined as (see [5])

$$
l(p, u):=\left\{x: \sum_{k}\left|u_{k} x_{k}\right|^{p_{k}}<\infty\right\} .
$$

If we take $u=\left(u_{k}\right)$ defined by

$$
u_{k}=k^{-s / p_{k}} \quad, \quad s \geq 0, k=1,2, \ldots
$$

then $l(p, u)$ reduces to $l(p, s)$. Obviously $x \in l(p, u)$ has same meaning as $u . x \in l(p)$, and so $l(p, u)$ is paranormed by

$$
g(x)=\left[\sum_{k}\left|u_{k} x_{k}\right|^{p_{k}}\right]^{1 / M} \quad, \quad M=\max \left(1, \sup p_{k}\right)
$$

Let X and Y be two sequence spaces and $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ be an infinite matrix of real or complex numbers. We write $A x=\left(A_{n}(x)\right)$ if $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ converges for each n. If $x=\left(x_{k}\right) \in X$ implies that $A x \in Y$, then we say that A defines a matrix transformation from X into Y. By (X, Y) we denote the class of matrices A such that $A x \in Y$ for $x \in X$.

2. Main Results

Throughout the text, we use the following notation :
For all integers $n, m \geq 1$,

$$
\begin{aligned}
t_{m n}(A x) & =\frac{1}{m+1} \sum_{i=0}^{m} A_{n+i}(x) \\
& =\sum_{k} a(n, k, m) x_{k}
\end{aligned}
$$

where

$$
a(n, k, m)=\frac{1}{m+1} \sum_{i=0}^{m} a_{n+i, k}
$$

Theorem 2.1. Let $1<p_{k}<\sup _{k} p_{k}=H<\infty$ for every k. Then $A \in\left(l(p, u), f_{\infty}\right)$ if and only if there exists an integer $N>1$ such that

$$
\begin{equation*}
\sup _{m, n} \sum_{k}|a(n, k, m)|^{q_{k}} u_{k}^{-q_{k}} N^{-q_{k}}<\infty . \tag{2.1.1}
\end{equation*}
$$

Proof. Sufficiency. Let (2.1.1) hold and that $x \in l(p, u)$ using the following inequality (see [4])

$$
|a b| \leq C\left(|a|^{q} C^{-q}+|b|^{p}\right)
$$

for $C>0$ and a, b two complex numbers $\left(q^{-1}+p^{-1}=1\right)$, we have

$$
\begin{aligned}
\left|t_{m n}(A x)\right| & =\sum_{k}\left|a(n, k, m) u_{k}^{-1} u_{k} x_{k}\right| \\
& \leq \sum_{k} N\left[|a(n, k, m)|^{q_{k}} u_{k}^{-q_{k}} N^{-q_{k}}+\left|u_{k} x_{k}\right|^{p_{k}}\right],
\end{aligned}
$$

where $q_{k}^{-1}+p_{k}^{-1}=1$. Taking the supremum over m, n on both sides and using (2.1.1), we get $A x \in f_{\infty}$ for $x \in l(p, u)$, i.e. $A \in\left(l(p, u), f_{\infty}\right)$.

Necessity. Let $A \in\left(l(p, u), f_{\infty}\right)$. Write $q_{n}(x)=\sup _{m}\left|t_{m n}(A x)\right|$. It is easy to see that for $n \geq 0, q_{n}$ is a continuous seminorm on $l(p, u)$ and $\left(q_{n}\right)$ is pointwise bounded on $l(p, u)$. Suppose that (2.1.1) is not true. Then there
exists $x \in l(p, u)$ with $\sup q_{n}(x)=\infty$. By the principle of condensation of singularities [8], the set

$$
\left\{x \in l(p, u): \sup _{n} q_{n}(x)=\infty\right\}
$$

is of second category in $l(p, u)$ and hence nonempty, that is, there is $x \in$ $l(p, u)$ with $\sup q_{n}(x)=\infty$. But this contradicts the fact that $\left(q_{n}\right)$ is pointwise bounded on $l(p, u)$. Now by the Banach-Steinhaus theorem, there is constant M such that

$$
\begin{equation*}
q_{n}(x) \leq M g(x) \tag{2.1.2}
\end{equation*}
$$

Now define a sequence $x=\left(x_{k}\right)$ by
$x_{k}=\left\{\begin{array}{l}\delta^{M / p_{k}}(\operatorname{sgn} a(n, k, m))|a(n, k, m)|^{q_{k}-1} u_{k}^{-1} S^{-1} N^{-q_{k} / p_{k}}, \quad 1 \leq k \leq k_{0} \\ 0 \quad \text { for } \quad k>k_{0} ;\end{array}\right.$
where $0<\delta<1$ and

$$
S=\sum_{k=1}^{k_{0}}|a(n, k, m)|^{q_{k}} N^{-q_{k}}
$$

Then it is easy to see that $x \in l(p, u)$ and $g(x) \leq \delta$. Applying this sequence to (2.1.2) we get the condition (2.1.1).

Theorem 2.2. Let $1<p_{k} \leq \sup _{k} p_{k}=H<\infty$ for every k. Then $A \in(l(p, u), f)$ if and only if
(i) The condition (2.1.1) of Theorem 2.1 holds;
(ii) $\lim _{m} a(n, k, m)=\alpha_{k}$ uniformly in n, for every k.

Proof. Sufficiency. Let (i) and (ii) hold and $x \in l(p, u)$.
For $j \geq 1$

$$
\begin{aligned}
& \sum_{k=1}^{j}|a(n, k, m)|^{q_{k}} N^{-q_{k}} u_{k}^{-q_{k}} \\
& \quad \leq \sup _{m} \sum_{k}|a(n, k, m)|^{q_{k}} N^{-q_{k}} u_{k}^{-q_{k}}<\infty \text { for every } n
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sum_{k}\left|\alpha_{k}\right|^{q_{k}} N^{-q_{k}} u_{k}^{-q_{k}}=\lim _{j} \lim _{m} \sum_{k=1}^{j}|a(n, k, m)|^{q_{k}} N^{-q_{k}} u_{k}^{q_{k}} \\
& \quad \leq \sup _{m} \sum_{k}|a(n, k, m)|^{q_{k}} N^{-q_{k}} u_{k}^{-q_{k}}<\infty, \quad\left(q_{k}^{-1}+p_{k}^{-1}=1\right) .
\end{aligned}
$$

Consequently reasoning as in the proof of the sufficiency of Theorem 2.1, the series $\sum_{k} a(n, k, m) x_{k}$ and $\sum_{k} \alpha_{k} x_{k}$ converge for every n, m; and for every $x \in l(u, p)$. For a given $\epsilon>0$ and $x \in l(u, p)$, choose k_{0} such that

$$
\begin{equation*}
\left(\sum_{k=k_{0}+1}^{\infty}\left|u_{k} x_{k}\right|^{p_{k}}\right)^{\frac{1}{H}}<\epsilon, \tag{2.2.1}
\end{equation*}
$$

where $H=\sup p_{k}$. Codition (ii) implies that there exists m_{0} such that

$$
\begin{equation*}
\left.\left|\sum_{k=1}^{k_{0}}\left[a(n, k, m)-\alpha_{k}\right]\right|<\epsilon / 2 \quad \text { (for all } m \geq m_{0}\right) \text {, uniformly in } n . \tag{2.2.2}
\end{equation*}
$$

Now, since $\sum_{k} a(n, k, m) x_{k}$ and $\sum_{k} \alpha_{k} x_{k}$ converges (absolutely) uniformly in m, n and for every $x \in l(u, p)$; we have that

$$
\sum_{k=k_{0}+1}^{\infty}\left[a(n, k, m)-\alpha_{k}\right] x_{k}
$$

converges uniformly in m, n for every $x \in l(u, p)$.
Hence by conditions (i) and (ii)

$$
\left.\left|\sum_{k=k_{0}+1}^{\infty}\left[a(n, k, m)-\alpha_{k}\right]\right|<\epsilon / 2 \quad \text { (for all } m \geq m_{0}\right) \text {, uniformly in } n .
$$

Therefore

$$
\left|\sum_{k=k_{0}+1}^{\infty}\left[a(n, k, m)-\alpha_{k}\right] x_{k}\right| \rightarrow 0 \quad(m \rightarrow \infty)
$$

uniformly in n, i.e.

$$
\begin{equation*}
\lim _{m} \sum_{k} a(n, k, m) x_{k}=\sum_{k} \alpha_{k} x_{k}, \tag{2.2.3}
\end{equation*}
$$

uniformly in n.
This completes the proof.
Necessity. Let $A \in(l(p, u), f)$. Since $f \subset f_{\infty}$ (see [6]), condition (i) follows by Theorem 2.1. Since $e_{k}=(0,0, \ldots 1(k$-th place $), 0,0, \ldots) \in l(p, u)$, condition (ii) follows immediately by (2.2.3).

References

[1] S. Banach, Théorie des operations linéaires, Warsaw, 1932.
[2] E. Bullut, and O, Çakar, The sequence space l(p, s) and related matrix transformations, Comm. Fac. Sci. Univ. Ankara $\left(A_{1}\right)$, 28 (1979), 33-44.
[3] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
[4] I. J. Maddox, Continuous and Kőthe-Toeplitz dual of certain sequence spaces, Proc. Camb. Phil. Soc., 65 (1969), 413-435.
[5] Mursaleen and A. A. Khan, The sequence space $l(p, s)$ and some matrix transformation, J. Fac. Education, 1 (1) (1994), 9-13.
[6] Mursaleen, Infinite matrices and almost convergent sequences, Southeast Asian Bull. Math., 19 (1) (1995), 45-48.
[7] S. Nanda, On some sequence spaces, Math. Student, 48 (4) (1980), 348-352.
[8] K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York, 1966.

Address
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
E-mail
Qamaruddin: sdqamar@rediffmail.com
S. A. Mohiuddine: mohiuddine@gmail.com

