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A GENERAL FIXED POINT THEOREM
FOR CONVERSE COMMUTING MULTIVALUED

MAPPINGS IN SYMMETRIC SPACES

Valeriu Popa

Abstract

In this paper a general fixed point theorem for converse commuting
multivalued mappings, which generalize Theorems 2.1 and 2.2 from [3],
is proved.

1 Introduction

Since Jungck [1] introduced the concept of compatible mappings, which gen-
eralize the notion of weakly commuting mappings introduced by Sessa [5],
many interesting results have been obtained by various authors. Singh and
Mishra [6] introduced the notion of weakly compatible mappings of a hybrid
pair g,F. In a recent paper, Sahu, Imdad and Kumar [4] proved a common
fixed point theorem for weakly compatible mappings in symmetrizable topo-
logical spaces. All the concepts which generalize the notion of compatible
mappings are considering the situation of fg and gf (or Fg and gF) from the
conditions f and g (or F and g). Lü [2] presented the concept of the converse
commuting mappings which discused the relation from the reverse, and gave
some fixed point theorems for single valued mappings. Recently, Qi-kuan
Liu and Xin-qi-Hu [3] introduced the new concept of converse commuting
multivalued mappings and proved some fixed point theorems for converse
commuting multivalued mappings.
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2 Preliminaries

Definition 2.1. A symmetric on a set X is a real valued function d on X x
X such that
(i) d(x, y) ≥ 0, ∀x, y ∈ X and d(x,y)=0 if and only if x=y,
(ii) d(x, y) = d(y, x), ∀x, y ∈ X.
Let d be a symmetric on X and D be the metric on 2X introduced by the
symmetric d as follows:
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}
for all A,B ∈ 2X , and d(x,A) = inf{d(x, y) : y ∈ A}
for all x ∈ X and A ∈ 2X

Let f,g be single valued mappings from X into itself and F : X → 2X be a
multivalued mappings.
Definition 2.2. f and g are called converse commuting [2] if for all x ∈ X,
fgx=gfx implies fx=gx.
Definition 2.3. t ∈ X is said to be a commuting point of f and g [2] if
fgt=gft.

In [3] the authors extend Definitions 2.2 and 2.3 for hybrid pairs of
mappings.
Definition 2.4. The mappings g and F are said to be converse commuting
if for all x ∈ X, gFx=Fgx implies gx ∈ Fx
Definition 2.5. t is said to be a commuting point of g and F if Fgt=gFt.

The following theorems are proved in [3].
Theorem 2.1. Let g : X → X and F : X − 2X be converse commuting
multivalued mappings. Suppose that there exists a commuting point of g
and F and
d(gx, gy) ≤ Φ(max{d(Fx, Fy), d(Fx, gy), d(gy, Fy)} for each x, y ∈ X. If
Φ is nondecreasing on R+ and φ(t) < t,∀t > 0 then there exists a common
fixed point of F and g.
Theorem 2.2. Four mappings f : X → X, g : X → X, F : X → 2X and
G : X → 2X satisfy
d(fx, gy) ≤ Φ(max{D(Fx,Gy), d(fx, Fx), d(Gy, gy), d(fx, Gy), d(gy, Fx)})
for each x, y ∈ X. Suppose that there exists a commuting point of f and F
and a commuting point of g and G. If (f,F) and (g,G) are converse commut-
ing mappings and Φ is nondecreasing on R+ and 0 < φ(t) < t, ∀t > 0, then
there exists a common fixed point of f,g,F and G.

The purpose of this paper is to prove a general theorem which generalize
Theorems 2.1 and 2.2 for hybrid functions satisfying an implicit relation.
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3 Implicit relation

Let F6 be the set of all real functions F (t1, ..., t6) : R6
+ → R satisfying the

following conditions:
(F1) : F is nonincreasing in variables t2, t5, t6,
(F2) : F (t, t, 0, 0, t, t) > 0, ∀t > 0.
Example 3.1. F (t1, ..., t6) = t1 + k max{t2, t3, t4, 1

2(t5 + t6)}, where k ∈
[0, 1).
(F1) : Obviously.
(F2) : F (t, t, 0, 0, t, t) = t(1− k) > 0, ∀t > 0.
Example 3.2. F (t1, ..., t6) = t21 − at1(t2 + t3 + t4) − bt5t6, where a, b > 0
and a + b < 1.
(F1) : Obviously.
(F2) : F (t, t, 0, 0, t, t) = t2(1− (a + b)) > 0,∀t > 0.
Example 3.3. F (t1, ...t6) = t31−at22−b

t23t4+t25t6
t3+t4+1 , where a, b > 0 and a+b < 1.

(F1) : Obviously.
(F2) : F (t, t, 0, 0, t, t) = t3(1− (a + b)) > 0, ∀t > 0.
Example 3.4. Let Φ : R+ → R+ be a function such that 0 < φ(t) < t, ∀t >
0, non-decreasing on R+ and
F (t1, ..., t6) = t1 − φ(max{t2, t3, ..., t6}).
(F1) : Obviously.
(F2) : F (t, t, 0, 0, t, t) = t− φ(t) > 0, ∀t > 0.
Remark 3.1. There exist functions F ∈ F6 which are increasing in variable
t3, t4.

4 Main result

Theorem 4.1. Assume that four mappings f, g : X → X and f, g : X → 2X

satisfy the inequality
(4.1) φ(d(fx, gy), D(Fx, Gx), d(fx, Fx), d(gy,Gy), d(fx, Gy), d(gy, Fx)) ≤
0
for each x, y ∈ X2, where φ ∈ F6. If (f,F) and (g,G) are converse commuting
multivalued mappings and f and F have a commuting point and g and G
have a commuting point, then there exists a common fixed point of f,g F
and G.
Proof. Let u be the commuting point of f and F and v be the commuting
point of g and G. Since f and F are converse commuting we have fFu=Ffu
and fu ∈ Fu, hence d(fu, Fu) = 0. It follows that ffu ∈ fFu = Ffu,
hence d(ffu, Fu) = 0. Similarly, we have gv ∈ Gv, d(gv, Gv) = 0 and
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ggv ∈ gGv = Ggv, hence d(ggv, Ggv) = 0.
Let us show that fu = gv. If not, since

D(Fu,Gv) ≤ d(fu, gv), d(Fu, gv) ≤ d(fu, gv), d(fu, Gv) ≤ d(fu, gv),

by (4.1) and (F1) we have successively
φ(d(fu, gv), D(Fu,Gv), d(fu, Fu), d(gv, Gv), d(fu, Gv), d(gv, Fu) ≤ 0
φ(fu, gv), d(fu, gv), 0, 0, d(fu, gv), d(gv, fu) ≤ 0
a contradiction of (F2). Hence fu=gv. We claim that fu is a fixed point of f.
Suppose that fu 6= ffu. Then d(fu, ffu) = d(ffu, fu) = d(ffu, gv) and
by (4.1) and (F1) we have successively
φ(d(ffu, gv), D(ffu, gv), d(ffu, Ffu), d(gv, Gv), d(ffu, Gv), d(gv, Ffu) ≤
0
φ(d(ffu, fu), d(ffu, fu), 0, 0, d(ffu, gv), d(gv, ffu) ≤ 0
φ(d(ffu, fu), d(ffu, fu), 0, 0, d(ffu, fu), d(ffu, fu) ≤ 0
a contradiction of (F2). Therefore, fu=ffu. Similarly we have gv=ggv. Since
fu=gv, we have fu=gv=ggv=gfu and fu is a fixed point of g.

On the other hand, fu = gv ∈ Ggv = Gfu and ffu ∈ fFu = Ffu.
hence fu is a common fixed point of f,g,F and G.
Theorem 4.2. Assume that four mappings f1, f2, g1, g2 : X → X satisfy
the inequality
(4.2) φ(d(f1x, g1y), d(f2x, g2y), d(f1x, f2x), d(g1y, g2y), d(f1x, g2y), d(g1y, f2x))
≤ 0
If (f, f1) and (g, g1) are converse commuting mappings and f and f1 have
a commuting point and g1 and g2 have a commuting point, where φ ∈ F6

then there exists an unique common fixed point of f1, f2, g1 and g2.
Proof. By Theorem 4.1 there exists a common fixed point of f1, f2, g1 and
g2. Let v 6= u another common fixed point of f1, f2, g1 and g2. Then by
(4.2) we have successively
φ(d(f1u, g1v), d(f2u, g2v), d(f1u, f2u), d(g1v, g2v), d(f1u, g2v), d(f2u, g1v)) ≤
0
φ(d(u, v), d(u, v), 0, 0, d(u, v), d(u, v)) ≤ 0
a contradiction of (F2).
Corollary 4.1. Theorem 2.2.
Proof. The proof it follows by Theorem 4.1 and Ex. 3.4.
Corollary 4.2. Theorem 2.1.
Proof. Since max{d(Fx, Fy), d(Fx, gy), d(gy, Fy)} ≤
max{d(Fx, Fy), d(fx, Fx), d(gy, Fy), d(fx, Fy), d(gy, Fx)}
and φ(t) is non decreasing the proof it follows by Theorem 4.1 and Corollary
4.1 for f=g and F=G.
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