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1. Introduction

The concept of intuitionistic fuzzy set is introduced by Atanassov in his classic paper [1]. Coker [2] defined the intuitionistic fuzzy topological spaces. As a continuation of this work, Joen et al [6] obtained some interesting results about the intuitionistic (-continuity and the intuitionistic fuzzy precontinuity. 

Dontctev [3] introduced the notion of contra continuous mapping. Ekici and Kerre [4] introduced the concept of fuzzy contra continuous mapping. The authors [10,11] introduced the notions of intuitionistic fuzzy contra continuous mapping and fuzzy contra strongly preconuinuous mapping. In the Section 3 as, a generalization of this classes, we introduce new weaker form of intuitionistic fuzzy contra continuity called intuitionistic fuzzy contra strongly precontinuity. Also, we produce some characterization theorems for that mapping. In the Section 4 we consider some properties concerning fuzzy compactness.  
2. Preliminaries

We introduce some basic notions and results that are used in the sequel. 

Definition 2.1. [1] Let X be a nonempty fixed set and I the closed interval [0,1]. An intuitionistic fuzzy set (IFS) A is an object of the following form  
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Obviously, every fuzzy set A on a nonempty set X is an IFS of the following form 
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Definition 2.2. [1]  Let A and B be IFSs of the form 
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(ii) 
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(iii) 
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(iv) 
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We will use the notation 
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 A constant fuzzy set 
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Let 
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Let f  be a mapping from an ordinary set X into an ordinary set Y. 
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is an IFS in Y, then the inverse image of B under f is IFS defined by 
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The image of IFS 
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 under f is IFS defined by
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where 
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Definition 2.3. [2] An intuitionistic fuzzy topology (IFT) in Coker’s sense on a nonempty set X is a family 
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 of IFSs in X satisfying the following axioms:
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In this paper by 
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 or simply by X we will denote the Coker’s intuitionistic fuzzy topological space (IFTS). Each IFS in 
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 is called intuitionistic fuzzy open set (IFOS) in X. The complement 
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 of an IFOS A in X is called an intuitionistic fuzzy closed set (IFCS) in X. 

Definition 2.4.[2] Let A be an IFS in IFTS X. Then    
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 is called an intuitionistic fuzzy closure of A.  

Definition 2.5. [5] Let A be an IFS of an IFTS X. Then A is called 

(1) an intuitionistic fuzzy regular open set (IFROS) if 
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clA

int(

A

=

; 

(2) an intuitionistic fuzzy (-open set (IF(OS) if 
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;
(3) an intuitionistic fuzzy semiopen set (IFSOS) if 
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(4) an intuitionistic fuzzy preopen set (IFPOS) if 
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Definition 2.6. [5] Let A be an IFS of an IFTS X. Then A is called 

(1) an intuitionistic fuzzy regular closed set (IFRCS) if 
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 is an IFROS;  

(2) an intuitionistic fuzzy (-closed set (IF(CS) if 
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 is an IF(OS; 
(3) an intuitionistic fuzzy semiclosed set (IFSCS) if 
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 is an IFSOS;   

(4) an intuitionistic fuzzy preclosed set (IFPCS) if 
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 is an IFPOS.   

Definition 2.7. [7] Let A be an IFS in IFTS X. Then    
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 is called an intuitionistic fuzzy preclosure of A. 

Definition 2.8. [7] An IFS A in an IFTS X is called an intuitionistic fuzzy strongly preopen set (IFSPOS) if 
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The complement 
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 of an IFSPOS A in X is called an intuitionistic fuzzy strongly preclosed set (IFSPCS) in X. 

Theorem 2.1. [6] An IFS of an IFTS X is (-open if and only if it is both IFSOS and IFSPOS. 

Definition 2.9.[7] Let A be an IFS in IFTS X. Then    
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Definition 2.10. [2,7,8] A mapping 
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(1) intuitionistic fuzzy continuous if 
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 (3) intuitionistic fuzzy irresolute strongly precontinuous if 
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Definition 2.11. [2,8] A mapping 
[image: image70.wmf]Y

X

:

f

®

 from an IFTS X into an IFTS Y is called 

(1) intuitionistic fuzzy open (intuitionistic fuzzy closed) if 
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(2) intuitionistic fuzzy irresolute strongly preopen (intuitionistic fuzzy irresolute strongly preclosed) if 
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Definition 2.12. [4,11] A mapping 
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 from an IFTS X into an IFTS Y is called 

(1) intuitionistic fuzzy contra continuous if 
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(2) intuitionistic fuzzy contra (-continuous if 
[image: image75.wmf])

B

(

f

1

-

 is an IF(OS in X, for each IFCS B in Y; 
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Definition 2.13. [2,9] Let X be an IFTS. A family 
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 is called a fuzzy open (fuzzy preopen, fuzzy strongly preopen) cover of X.  


A finite subfamily of a fuzzy open (fuzzy preopen, fuzzy strongly preopen) cover 
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An IFTS X is called fuzzy compact (fuzzy precompact, fuzzy strongly precompact) if every fuzzy open (fuzzy preopen, fuzzy strongly preopen) cover of X has a finite subcover. 

Definition 2.14. [9] An IFTS X is called 
(1) fuzzy strongly precompact if each fuzzy strongly preopen cover of X has a finite subcover for X;  

(2) fuzzy strongly pre-Lindelof if each fuzzy strongly preopen cover of X has a countable subcover for X;   

(3) fuzzy countable strongly precompact if each countable fuzzy strongly preopen cover of X has a finite  subcover for X.  

Definition 2.15. [9] An IFTS X is called 

(1) fuzzy precompact if each fuzzy preopen cover of X has a finite subcover for X;  

(2) fuzzy pre-Lindelof if each fuzzy preopen cover of X has a countable subcover for X;   

(3) fuzzy countable precompact if each countable fuzzy preopen cover of X has a finite  subcover for X.  

3. Intuitionistic fuzzy contra strong precontinuity

Definition 3.1. A mapping 
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 from an IFTS X into an IFTS Y is called intuitionistic fuzzy contra strongly precontinuous if 
[image: image82.wmf])

B

(

f

1

-

 is an IFSPOS in X, for each IFCS B in Y. 

Remark 3.1. From the definition above it is not difficult to conclude that the following diagram of implications is true. 

intuitionistic fuzzy contra continuity 
(
intuitionistic fuzzy contra (-continuity
(
intuitionistic fuzzy contra strong precontinuity
(
intuitionistic  fuzzy contra precontinuity 
The following example shows that the converse statement may not be true. 

Example 3.1. Let 
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We put 
[image: image87.wmf]},

1

,

B

A

,

B

A

,

B

,

A

,

0

{

~

~

Ú

Ù

=

t

 
[image: image88.wmf]},

1

,

B

,

0

{

~

~

1

=

t

 
[image: image89.wmf]}

1

,

A

,

0

{

~

c

~

2

=

t

 and 
[image: image90.wmf]}.

1

,

C

,

0

{

~

~

3

=

t

 Then, the mapping 
[image: image91.wmf])

,

X

(

)

,

X

(

:

id

f

2

1

t

®

t

=

 is intuitionistic fuzzy contra precontinuous but it is not intuitionistic fuzzy contra strongly precontinuous. Similarly, the mapping  
[image: image92.wmf])

,

X

(

)

,

X

(

:

id

f

3

t

®

t

=

 is intuitionistic fuzzy contra strongly precontinuous but f is neither intuitionistic fuzzy contra continuous nor intuitionistic fuzzy contra (-continuous. ( 

Theorem 3.1. Let 
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 be a mapping from an IFTS X into an IFTS Y. Then, the following statements are equivalent:

(i) f is an intuitionistic fuzzy contra strongly precontinuous mapping;
(ii) 
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Proof. (i)((ii) Let f be any intuitionistic fuzzy contra strongly precontinuous mapping and let B be any IFOS in Y.  Then, 
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The converse can be prove by the same token. ■
Theorem 3.2. Let 
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Then, f is intuitionistic fuzzy contra strongly precontinuous.
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Theorem 3.3. Let 
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Theorem 3.4. Let 
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Since f is a injective mapping we have 
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 is an IFSPOS in X. Thus f is an intuitionistic fuzzy contra strongly precontinuous mapping. ■
Theorem 3.5. Let 
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 be an intuitionistic fuzzy contra strong precontinuous mapping from an IFTS X into an IFTS Y. Then the following statements holds:

(i) 
[image: image139.wmf]),

pclB

(int(

f

)

B

(

spclf

1

1

-

-

Í

 for each IFSPOS B in Y. 
(ii) 
[image: image140.wmf]),

B

(

f

int

sp

))

B

int

p

(

cl

(

f

1

1

-

-

Í

 for each IFSPCS B in Y. 
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(ii) It can be prove in a similar manner as (i). ■
The following theorem gives some local characterizations of the intuitionistic fuzzy contra strong precontinuous mappings. 

Theorem 3.6. Let 
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 be a mapping from an IFTS X into an IFTS Y. Then the following statements are equivalent:

(i) f is an intuitionistic  fuzzy contra strongly precontinuous mapping.
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Proof. (i)((ii) Let f be an intuitionistic  fuzzy contra strongly precontinuous mapping, let 
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(ii)((iii) The results follows from the evident relations 
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(iii)((i) Let B be any  IFCS in Y and let 
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 Thus f is an intuitionistic fuzzy contra strongly precontinuous mapping. ■ 
Theorem 3. 7. Let 
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 are mappings, where X, Y and Z are IFTSs.  Then, the following statements hold:

(i) if f is an intuitionistic fuzzy contra strongly precontinuous mapping and g is an intuitionistic  fuzzy continuous mapping, then gf is an intuitionistic fuzzy contra strongly precontinuous mapping;

(ii) if f is an intuitionistic fuzzy contra strongly precontinuous mapping and g is an intuitionistic fuzzy contra continuous mapping, then gf is an intuitionistic fuzzy strongly precontinuous mapping;
(iii) if f is an intuitionistic fuzzy irresolute strongly precontinuous mapping and g is an intuitionistic fuzzy contra strongly precontinuous mapping, then gf is an intuitionistic fuzzy contra strongly precontinuous mapping;

(iv) if f is an intuitionistic fuzzy irresolute strongly preopen (intuitionistic fuzzy irresolute strongly preclosed) surjective mapping and gf is an intuitionistic fuzzy contra strongly precontinuous mapping, then g is an intuitionistic fuzzy contra strongly precontinuous mapping. 

 (v) if gf is an intuitionistic fuzzy contra strongly precontinuous mapping and g is an intuitionistic fuzzy open (fuzzy closed) injective mapping, then f is a fuzzy strongly precontinuous mapping. 
Proof. The proof of the statements (i), (ii) and (iii) follows from the relation 
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The proof of the condition (iv) follows from the fact that for any surjective mapping g holds 
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The proof of the condition (v) follows from the fact that for any injective mapping g holds 
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Corollary 3.8. Let 
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 are also intuitionistic fuzzy contra strongly precontinuous mappings. 

Proof. It follows from the facts that projections are intuitionistic fuzzy continuous mappings. ■
Theorem 3.9. Let 
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 be a mapping from an IFTS X into an IFTS Y. If the graph 
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 of f is intuitionistic fuzzy contra strongly precontinuous, then f is intuitionistic fuzzy contra strongly precontinuous. 

Proof. For each IFOS B in Y holds 
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 is an IFSPCS in X, so f is an intuitionistic fuzzy contra strongly precontinuous mapping. ■
Theorem 3. 10. Let 
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 be a mapping  from an IFTS X into an IFTS Y. The mapping f is  intuitionistic fuzzy contra (-continuous if and only if it is both intuitionistic fuzzy contra semicontinuous and intuitionistic fuzzy contra strongly precontinuous. 

Proof. It follows from the Theorem 2.1. ■
4. Applications to fuzzy compact spaces
Definition 4.1. An IFTS X is called 

(1) fuzzy S-closed if each fuzzy regular closed cover of X has a finite subcover for X;  

(2) fuzzy S-Lindelof if each fuzzy regular closed cover of X has a countable subcover for X;   

(3) fuzzy countable S-closed if each countable fuzzy regular closed cover of X has a finite  subcover for X. 

Remark 4.1. From the definitions above we may conclude that 

1) every fuzzy S-closed IFTS is fuzzy S-Lindelof.

2) every fuzzy S-closed IFTS is fuzzy countably S-closed. 

Definition 4.2. An IFTS X is called 

(1) fuzzy strongly S-closed if each fuzzy closed cover of X has a finite subcover for X;  

(2) fuzzy strongly S-Lindelof if each fuzzy closed cover of X has a countable subcover for X;   

(3) fuzzy countable strongly S-closed if each countable fuzzy closed cover of X has a finite  subcover for X. 
Remark 4.2. It is not difficult  to conclude that 

1) every fuzzy strongly S-closed IFTS is fuzzy strongly S-Lindelof.

2) every fuzzy strongly S-closed IFTS is fuzzy countably strongly S-closed. 

Definition 4.3. An IFTS X is called 

(1) fuzzy almost compact if each fuzzy open cover of X has a finite subcover the closure of whose members cover X;  

(2) fuzzy almost Lindelof if each fuzzy open cover of X has a countable subcover the closure of whose members cover X;   

(3) fuzzy countable almost compact if each countable fuzzy open cover of X has a finite  subcover the closure of whose members cover X.   

Remark 4.3. From the definitions above we may conclude that 

1) every fuzzy almost compact IFTS is fuzzy almost Lindelof.

2) every fuzzy almost compact IFTS is fuzzy countably almost compact. 

Theorem 4.1. Let 
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 be an intuitionistic fuzzy contra strongly precontinuous mapping from an IFTS X onto an IFTS Y. If X is fuzzy strongly precompact (fuzzy strongly pre-Lindelof, fuzzy countable strongly precompact), then Y is fuzzy strongly S-closed (fuzzy strongly S-Lindelof, fuzzy countable strongly S-closed). 

Proof. Let 
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 is a fuzzy strongly preopen cover of X. Since X is fuzzy strongly precompact, there exists a finite subcover 
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so Y is fuzzy strongly S-closed. ■

Corollary 4.2. Let 
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 be an intuitionistic fuzzy contra strongly precontinuous mapping from an IFTS X onto an IFTS Y. If X is fuzzy precompact (fuzzy pre-Lindelof, fuzzy countable precompact), then Y is fuzzy strongly S-closed (fuzzy strongly S-Lindelof, fuzzy countable strongly S-closed). 

Theorem 4.3. Let 
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 be an intuitionistic fuzzy contra strongly precontinuous mapping from an IFTS X onto an IFTS Y. If X is fuzzy strongly precompact (fuzzy strongly pre-Lindelof, fuzzy countable strongly precompact), then Y is fuzzy S-closed (fuzzy S-Lindelof, fuzzy countable S-closed). 

Proof. It follows from the statement that each IFRCS is an IFCS. ■ 

Corollary 4.4. Let 
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 be an intuitionistic fuzzy contra strongly precontinuous mapping from an IFTS X onto an IFTS Y. If X is fuzzy precompact (fuzzy pre-Lindelof, fuzzy countable precompact), then Y is fuzzy S-closed (fuzzy S-Lindelof, fuzzy countable S-closed). 

Theorem 4.5. Let 
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 be an intuitionistic fuzzy contra strongly precontinuous mapping from an IFTS X onto an IFTS Y. If X is fuzzy strongly precompact (fuzzy strongly pre-Lindelof, fuzzy countable strongly precompact), then Y is fuzzy almost compact (fuzzy almost Lindelof, fuzzy countable almost compact). 
 Proof. Let 
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 is a fuzzy strongly preopen cover of X. Since X is fuzzy strongly precompact, there exists a finite subcover  
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so Y is fuzzy almost compact. ■

Corollary 4.6. Let 
[image: image214.wmf]Y
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 be an intuitionistic fuzzy contra strongly precontinuous mapping from an IFTS X onto an IFTS Y. If X is fuzzy precompact (fuzzy pre-Lindelof, fuzzy countable precompact), then Y is fuzzy almost compact (fuzzy almost Lindelof, fuzzy countable almost compact). 

We urge the interested reader to find example/s for the notions introduced in this section and to show how they are related to each other and the other related types of  intuitionistic fuzzy compact notions.
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