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Abstract: In this paper a trust region algorithm for minimization of locally Lipschitzian functions, which uses the second order Dini upper directional derivative is considered. A convergence proof is given, as well as an estimate of the rate of convergence.
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 1. INTRODUCTION

We shall consider the following LC1 problem of unconstrained optimization
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where 
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 is a LC1 function on the open convex set 
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, that means the objective function we want to minimize is continuously differentiable and its gradient 
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 is locally Lipschitzian, i.e.
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for some 
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We shall present an iterative algorithm which is based on the results  from [2] and [3] for finding an optimal solution to problem (1) generating the sequence of points 
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 of the following form:
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where the directional vector  
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  is defined by the particular algorithm.

The algorithm  which we are going to present  is a trust region algorithm, which uses the second order Dini upper directional derivative instead of the Hessian in the quadratic approximatiom model. 

The convergence of trust region algorithms has been usually proved for 
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 functions, i.e. for twice continuously differentiable functions ( see for example [2]). The aim of this paper is to establish convergence under weaker assumptions,  if 
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2. PRELIMINARIES

We shall give some preliminaries that will be used for the remainder of the paper.

Definition (see [3]) The second order Dini upper directional derivative of the function 
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If 
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 is directionally differentiable at 
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, we have
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for all  
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Lemma 1 (See [3]) Let 
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 be a 
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 is an open subset. If 
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 is a solution of 
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 optimization problem (1), then:
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Lemma 2 (See [3]) Let 
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and 
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, then 
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 is a strict local minimizer of (1).

3. THE OPTIMIZATION ALGORITHM

At the k-th iteration  we want to find a solution 
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 of the following direction finding subproblem
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                                                          s.t. 
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for some bound 
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, where the norm 
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is arbitrary, but is usually chosen as the 
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-norm. We choose the radius 
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 to be as large as possible depending on the agreement between  
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 We can measure this agreement by comparing the actual reduction in f on the k-th step
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and the corresponding predicted reduction

                                                        
[image: image47.wmf](

)

(

)

Pr0.

kkkkk

edd

=DF=F-F


Hence, if the ratio
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 is closer to unity, the better is the agreement  beteween the quadratic model  
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The trust region algorithm for
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  optimization

Step 0. Given 
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   k=0;

Step 1.  If  
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 STOP; otherwise find a solution 
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 to the subproblem (3);

Step 2.  Compute 
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Step 3. 
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Step 4.   If 
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Step 5.  set  
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, go to step 1.

Proposition. If the function 
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 then: 1) the function 
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 is uniformly and, hence, strictly convex, and, consequently; 2) the level set 
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Proof.  See [1].

Lemma 3.


[image: image69.wmf](

)

(

)

(

)

(

)

2

Pr0min,.

2

kk

kkkkk

fxfx

edd

c

d

ìü

ÑÑ

ïï

=F-F³

íý

ïï

îþ


Proof is analogous to the proof of  Lemma 5.2 in  [3].

Convergence theorem.  If the function 
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 satisfies the condition  (4) and if any level set  
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 is a unique minimal point.

Proof.  The algorithm generates a subsequence 
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From the boundness of level sets 
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 belongs to a bounded set. Hence there exist accumulation points of  
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 be any accumulation points of  such a subsequence. We only have to prove that  
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 since, according to the Proposition, the stationary point is a unique minimizer.

We shall show that 
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 can not arise from case a) but only from case b). Namely, since 
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 from (3) it follows that there exists a sequence 
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 (see [3]) converging to zero such that 

                                    
[image: image91.wmf](

)

(

)

(

)

(

)

(

)

(

)

0

kkkkkkkk

fxfxdd

ed

-+-F-F£

, i.e.   

                                                          
[image: image92.wmf]Pr.

kkkk

Areded

ed

-£



                  (5)  

 Dividing  (5) by 
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 can arise only from case b). In case b) 
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From Lemma3 it follows that 
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Since 
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Following Theorem 4.4 from [3] it can be analogously proved that 
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4. CONCLUSION

In this paper we presented a trust region algorithm which is based on the results  from [2] and [3]. We proved the convergence of the trust region method  for LC1   class of functions using the second order Dini upper directional derivative instead of the Hessian in the quadratic approximatiom model,  аs  it has been done in [2]. In [2] the convergence proof of  the trust region algorithm is given for  
[image: image112.wmf]2

C

f

Î

, hence under stronger assumptions. In [3]  a trust region algorithm is also defined for LC1  functions. It uses the exact solution 
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. In [3] the convergence proof is given under  a little stronger assumptions than it has been done in this paper.
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