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CENTERS IN INSERTED GRAPHS

L. K. Pramanik

Abstract

In this paper we study some concepts involving distance in inserted
graphs with an emphasize on centers in inserted graphs. More precisely
we prove that for every non-trivial connected graph H there exists a
graph G such that H is the center of G and the inserted graph of H is
the center of the inserted graph of G. Graphs which are the periphery
of some inserted graph are characterized.

1 Introduction

Suppose an official has to find a suitable place for an emergency facility
(such as a fire station) in a given traffic network. It is naturally to locate
it in such a way that the distance to the furthest vertex will be as short as
possible, hence to build the fire station in the center of the corresponding
graph. This is a reason for which centers in graphs have been studied in
many papers.

We consider ordinary graphs (finite, undirected, with no loops or mul-
tiple edges). Let G be a graph with vertex set VG and edge set EG. Each
member of VG ∪ EG will be called an element of G. A graph G is called a
trivial graph if it has a vertex set with single vertex and a null edge set. If e
is an edge of a graph G with end vertices x and y, then we denote the edge
e, by e = xy. By dG(x, y) we mean the distance between the vertices x and
y in the graph G.

It is known that for each graph H there is a graph G having the center H
and containing at most four noncentral vertices [4]. The minimum number
of noncentral vertices A(H) among graphs having the center H was found by
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Buckley, Miller and Slater [5] in the case when H is a tree. They have also
shown that for each graph H with n ≥ 9 vertices and an integer k ≥ n + 1
there exists a k-regular graph G having the center H. So far little is known
about centers of special graphs. Clearly the center of a tree consists of either
a single vertex or a pair of adjacent vertices. All seven central subgraphs
admissible in maximal outerplanar graphs were listed by Proskurowski [7].
The greatest subgraph contains six vertices. Laskar and Shier [6] studied
centers in chordal graphs. A good survey on centers can be found in the
book [4].

We introduce the notions of box graph B(G) and inserted graph I(G) of
a non-trivial graph G in [3].

The connections in distance properties of a graph and its inserted graph
are investigated in this paper. Relations between the eccentricity of an edge
and the eccentricity of its end vertices are provided. We prove that for every
non-trivial connected graph H there is a graph G such that H is the center
of G and the inserted graph of H is the center of the inserted graph of G.
If the inserted graph of a graph H has the radius at least three, then the
similar result holds for the periphery instead of center.

In §2, we recall some definitions and results to be used in this paper.
In §3, we prove some basic results related with center and diameter of a

graph.
In §4, we show that each inserted graph can be a center of some inserted

graph and for a non-trivial connected graph H there exist connected graphs
Gi such that H = C(Gi), I(C(Gi)) = C(I(Gi)), where i = r(I(G))− r(G).

In §5, we shall study the existence of inserted graphs with a given pe-
riphery.

2 Preliminaries

Definition 2.1 A graph can be constructed by inserting a new vertex on
each edge of G and the resulting graph is called a box graph of G, denoted
by B(G). For an edge e of G, e denotes the vertex of B(G) corresponding
to the edge e.

Definition 2.2 Let IG be the set of all inserted vertices in B(G). A graph
I(G)with vertex set IG is called the inserted graph in which any two vertices
are adjacent if they are joined by a path of length two in B(G). Moreover if
VG = {v1, v2, ..., vn} and EG = {e1, e2, ..., em} then

VB(G) = {v1, v2, ..., vn, e1, e2, ..., em}.
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Definition 2.3 Let G be a connected graph, v a vertex and f an edge of G.
Then the eccentricity eG(v) of the vertex v is the distance to a vertex furthest
from v in G. A vertex is eccentric to the vertex v if their distance equals to
eG(v). The eccentricity eG(f) of the edge f equals to the eccentricity eI(G)(f)
of the vertex f in the graph I(G). The radius r(G) is the minimal eccentricity
of the vertices, whereas the diameter d(G) is their maximal eccentricity.

Definition 2.4 The vertex v is said to be a central vertex of G if eG(v) =
r(G). The center C(G) of G is the subgraph induced by all central vertices,
while the periphery Per(G) of G is the subgraph induced by the vertices with
the greatest eccentricity.

The next theorem is due to Adhikari and Pramanik [2].

Theorem 2.5 Let e = ab and f = uv be two different edges in a connected
graph G. Then for their distance in the inserted graph of G we have

dI(G)(e, f) = 1 + min{dG(a, u), dG(a, v), dG(b, u), dG(b, v)}.

Let k be an integer and let x, y be two vertices of a graph G, we mean by
Sk(x, y) the subgraph in G induced by the vertices which have the distance
from both x and y at least k. Now we can express the eccentricity in an
inserted graph in the following way:

Observation 2.6 Let u and v be adjacent vertices in a connected graph G
with at least three vertices. Then the eccentricity of the vertex uv in I(G)
equals to the maximal k ≥ 0 such that the subgraph Sk−1(u, v) contains an
edge.

3 Basic results

We start this section with a lemma. The lemma provides relations between
the eccentricity of an edge and that of its end vertices.

Lemma 3.1 Let u and v be adjacent vertices of a connected graph G. Then
| eI(G)(uv) − eG(v) |≤ 1 holds. Moreover, if u and v have distinct eccen-
tricities, then | eG(u)− eG(v) |= 1 holds and the eccentricity of the edge uv
equals to the eccentricity of one of its end vertices.

Proof: Note that | eG(u) − eG(v) |≤ 1 as u and v are adjacent. Now it
is sufficient to prove that | eI(G)(uv) − eG(v) |≤ 1 holds. If G has two
vertices, then G is a complete graph with 2 vertices, i.e., K2 and the lemma
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holds. Now we assume that G has at least two edges. Then there exists an
edge distinct from uv and by Theorem 2.5 we have eI(G)(uv) = eG(uv) ≤
1 + eG(v). Further, we verify that eI(G)(uv) = eG(uv) ≥ eG(v) − 1 holds.
Let a be a vertex eccentric to v and distinct from u and let b be a neighbour
of a. Then the distance between any vertex from {u, v} and any vertex from
{a, b} is at least eG(v) − 2, since otherwise there will be a v − a path with
the length shorter than eG(v). As uv 6= ab, according to Theorem 2.5 we
have eI(G)(uv) = eG(uv) ≥ dI(G)(uv, ab) ≥ 1 + eG(v)− 2 = eG(v)− 1.

Corollary 3.2 For a connected graph G with at least three vertices we have
| r(I(G))− r(G) |≤ 1. Moreover, r(I(G)) = r(G)+1, if and only if for each
two adjacent central vertices x and y there is an edge f such that both end
vertices of f are eccentric to both x and y. Further, r(I(G)) = r(G) − 1 if
and only if for each edge f joining central vertices and each other edge g
at least one end vertex of f has the distance at most r(G)− 2 to some end
vertex of the edge g.

Corollary 3.3 For a connected graph G with at least three vertices we have
| d(I(G))− d(G) |≤ 1.

A connected graph G is called self-centered, if C(G) = G. Now some
consequences for the radius and the center in an inserted graph follow:

Theorem 3.4 Let G be a connected graph with at least three vertices. If G
has a nontrivial center and a radius greater than its inserted graph, then
C(I(G)) is an induced subgraph of I(C(G)). Moreover, if I(G) is self-
centered then G is also self-centered.

Proof: Let r(I(G)) = R − 1, where R is the radius of G. Then for a
vertex uv in C(I(G)) we have eG(u) ≥ R and eG(v) ≥ R, Lemma 3.1 gives
eG(u) = eG(u) = R, hence uv is in I(C(G)). Moreover, if I(G) is self-
centered then C(I(G)) = I(G) is an induced subgraph in I(C(G)), so G is
a subgraph of C(G) and G is self-centered.

Theorem 3.5 Let G be a connected graph with at least three vertices. If G
has a nontrivial center and a radius smaller than its inserted graph, then
I(C(G)) is an induced subgraph of C(I(G)). Moreover, if G is self-centered
then I(G) is also self-centered, and I(C(G)) = C(I(G)) if and only if G is
self-centered.

Proof: Let r(I(G)) = R + 1, where R is the radius of G. Then for a
vertex uv in I(C(G)) we have eG(u) = eG(v) = R, which gives eG(uv) =
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eI(G)(uv) ≤ R + 1 = r(I(G)), and that is why uv is in C(I(G)). Moreover,
if G is self-centered then I(G) is an induced subgraph in C(I(G)), hence
I(G) is self-centered. Further, if G is self-centered, then we have I(C(G)) =
I(G) = C(I(G)).

On the other hand, suppose that G is not self-centered. Then it contains
an edge cy joining a central vertex c to a noncentral vertex y, hence eG(c) =
R and eG(y) = R + 1. Then eG(cy) = eI(G)(cy) ≤ R + 1 due to Lemma 3.1,
and cy is in I(C(G)). Hence I(C(G)) = C(I(G)) does not hold.

Theorem 3.6 Let G be a connected graph with at least three vertices. If G
has a nontrivial periphery and a diameter greater than its inserted graph,
then I(Per(G)) is an induced subgraph of Per(I(G)). Moreover, if G is
self-centered then I(G) is also self-centered and I(Per(G)) = Per(I(G)) if
and only if G is self-centered.

Proof: Let d(I(G)) = D−1, where D is the diameter of G. Then for a vertex
uv in I(Per(G)) we have eG(u) = eG(v) = D, so eG(uv) = eI(G)(uv) ≥
D − 1 = d(I(G)), and which gives that uv is in Per(I(G)). Moreover, if
G is self-centered then Per(G) = G and I(Per(G)) = I(G) is an induced
subgraph in Per(I(G)), hence I(G) = Per(I(G)), which means that I(G) is
self-centered. Further, if G is self-centered, then I(G) is also self-centered,
and clearly I(Per(G)) = Per(I(G)) holds.

On the other hand, if G is not self-centered, then it contains an edge cy
such that eG(c) = D and eG(y) = D − 1, clearly cy is not in I(Per(G)).
Then, due to Lemma 3.1, we have eG(cy) = eI(G)(cy) ≥ D − 1 = d(I(G)),
hence cy is in Per(I(G)). Hence I(Per(G)) = Per(I(G)) does not hold.

Theorem 3.7 Let G be a connected graph with at least three vertices. If G
has a nontrivial periphery and a diameter smaller than its inserted graph,
then Per(I(G)) is an induced subgraph of I(Per(G)). Moreover, if I(G) is
self-centered then G is also self-centered.

Proof: Let d(I(G)) = D+1, where D is the diameter of G. Then for a vertex
uv in Per(I(G)) we have eI(G)(uv) = D + 1 = eG(uv), so eG(u) ≥ D and
eG(v) ≥ D, and u and v are in Per(G). Hence uv is in I(Per(G). Moreover,
if I(G) is self-centered then I(G) = Per(G) and so G is a subgraph of
Per(G). Thus G is self-centered.

4 Inserted graphs with a prescribed center

In this section at first we show that each inserted graph can be a center of
some inserted graph.
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Theorem 4.1 Let H be a connected graph with n vertices and m ≥ 1 edges.
Then there is a connected graph G with at most 4n vertices and at most
m + n(n + 1) edges such that I(H) is the center of I(G).

Proof: Let VH = {v1, v2, ..., vn} be the vertex set of H. Now we will con-
struct its supergraph G as follows. Its vertex set will be the set {vi, xi, yi, zi |
i = 1, 2, ..., n}. Further the edge set consists of the edges of H together with
the edges joining xi to each vertex from VH − {vi}, the edges xiyi and yizi

for all i = 1, 2, ..., n (see Fig.1 for H = P2, where P2 is a path of length 2 ).
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Figure 1 : The inserted graph of the drawn graph has I(P2) as its center.
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Clearly, each edge joining two central vertices has the eccentricity three,
while for any other edge f let say v1 be a central vertex which is nearest to
f . Then its distance to y1z1 is at least four. Hence C(I(G)) = I(H) holds.

Remark 4.2 Under the condition of Theorem 4.1 there exist connected
graphs with number of vertices less than 4n and number of edges less than
m + n(n + 1) such that I(H) is the center of I(G). As an example we draw
the Figure 2 in support of the remark.
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Figure 2 : The inserted graph of the drawn graph has I(P2) as its center.
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Now we shall study connected graphs with a nontrivial center for which the
mappings I and C commute, hence I(C(G)) = C(I(G)). Denote 4r(G) =
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r(I(G))−r(G). If 4r(G) = 1 then due to Theorem 3.5, the mappings I and
C commute if and only if G is self-centered. Complete graphs are examples
of such graphs. But for any i ∈ {0,−1} any graph H without isolated
vertices, there is a graph G with I(C(G)) = C(I(G)) and 4r(G) = i, as the
next theorem states.

Theorem 4.3 Let H be a connected graph with n vertices, m ≥ 1 edges
and let i be either 0 or −1. Then there exist connected graphs Gi such that
H = C(Gi), I(C(Gi)) = C(I(Gi)) and i = 4r(G) holds. Moreover, G0 has
4n + 6 vertices and m + n2 + 4n + 4 edges.

Proof: Let VH = {v1, v2, ..., vn} be the vertex set of H and let EH be
its edge set. We shall construct graphs G0 and G−1 with the requested
properties and start with G0.

r r r r r rb1 c1 v3 α1 α2 α3

Figure 3: The graph G0 with C(G0) = P2 and C(I(G0)) = I(C(G0))
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The vertex set of G0 equals VH∪{ai, bi, ci | i = 1, 2, ..., n}∪{α1, α2, α3, β1, β2, β3}.
Its edge set is EH ∪ {aibi, aici, bici, α1vi, β1vi | i = 1, 2, ..., n} ∪ {civj | i 6=
j} ∪ {α1α2, α2α3, β1β2, β2β3} (see Fig.3). One can check that r(G0) = 3
and H = C(G0), since every vertex outside H has the distance at least four
to some of the vertices α3 and β3. Further, any edge from C(G0) has the
eccentricity three (its distance to a1b1 is three). As a center of I(G0) lies
in a single block of I(G0), if any edge not from H lies in C(I(G0)), then
one its end vertex, say v1, is in H. Then its distance to a1b1 is four, hence
C(I(G0)) = I(C(G0)) holds.



28 L. K. Pramanik

rr rr r

r

r

a2d2

b3

c2 b2 v2

v3

v1

a1 b1 c1 d1

a3 c3 d3

x13

x31

x23

x21

x12

x32

Figure 4: The graph G−1 with C(G−1) = P2 and I(C(G−1)) = C(I(G−1))
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Now we shall construct the graph G−1. The vertex set of G−1 will contain
VH ∪ {ai, bi, ci, di | i = 1, 2, ..., n} ∪ {xij | i 6= j, i = 1, 2, ..., n, j = 1, 2, ..., n}.
Its edge set consists of EH ∪ {xijai, xijbj | i 6= j} ∪ {aibi, bici, cidi | i =
1, 2, ..., n} (see Fig.4).

Obviously, H is the center of G−1 and r(G−1) = 6, as d(vi, di) = 6. Note
that every joining central vertices has the eccentricity five due to Theorem
2.5. Further, if an edge is adjacent to exactly one central vertex, say v1, then
its distance to the edge c1d1 is at least six. Finally, if an edge f is adjacent
to no central vertex, then its distance to some edge of the form cidi is also
at least six, so r(I(G−1)) = 5 = r(G−1) + 1 and I(H) = C(I(G−1))holds.

Theorem 4.4 Let H be a connected bipartite graph of n vertices and m ≥ 1
edges. Then there is a graph G with n+6 vertices and m+n+4 edges having
the center H and satisfying C(I(G)) = I(C(G)).

Proof: Let A and B be disjoint sets of vertices in H, such that adjacent
vertices lie in distinct sets. We obtain G after the addition of the new
vertices a, a1, a2, b, b1 and b2 such that a is adjacent to a1 and to all vertices
in A, b is adjacent to b1 and to all vertices in B and a2a1 and b1b2 are also
adjacent (see Fig.5). Clearly, G has the desired property.
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Figure 5 : A graph having the center H = 2K2
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5 The periphery in inserted graphs

Now we shall study the existence of inserted graphs with a given periphery.
Note that r(Per(G)) ≥ d(G) holds for each graph G.

Theorem 5.1 Let H be a nontrivial graph such that I(H) has a radius at
most two. Then I(H) is the periphery of some inserted graph if and only
if either I(H) is self-centered or H contains two vertices which are not end
vertices and each edge is adjacent to just one of them.

Proof: If I(H) is self-centered, then I(H) = Per(I(H)) holds. Now assume
H contains two vertices u and v which are not end vertices and such that each
edge is adjacent to just one of the vertices u and v. Then I(H) = Per(I(H+
uv)) as if we add the edge uv to H, then its eccentricity will be one, while
each other edge has the eccentricity two, since we have dH+uv(ux, vy) for
pairwise distinct vertices x, y, u and v.

Assume now that there exists a graph G such that I(H) is the periphery
of I(G). Then we have 2 ≥ r(I(H)) ≥ r(Per(I(G))) ≥ d(I(G)). Hence
I(G) is either self-centered or has the diameter two and the radius one. If
I(G) is self-centered, then I(H) = Per(I(G)) = I(G), hence I(H) has to be
self-centered. Assume now the latter case holds. Then G contains an edge
uv with the eccentricity one and so each edge is adjacent to u or v. Note
that I(H) has the radius two as we have r(I(H)) ≥ d(I(G)) = 2. Hence the
edge uv is not in H. Further, if u is an end vertex in H and x is the only its
neighbour, then as H is connected there is a vertex y, y 6= u adjacent to xv.
But y = v as the edge xy is adjacent to either u or v and x distinct from
u and v. Hence xv has the eccentricity one which contradicts r(I(H)) = 2.
So u and similarly v are not end vertices, which completes the proof.
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