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SOME GENERALIZATONS OF
ALMOST CONTRA-SUPER-CONTINUITY

Erdal Ekici

Abstract

We introduced and studied some new classes of functions called
(e∗, s)-continuous functions, (e, s)-continuous functions and (a, s)-con-
tinuous functions. These new notions of functions generalize the class
of almost contra-super-continuous functions. Some properties and sev-
eral characterizations of these types of functions are obtained. We in-
vestigate the relationships between these classes of functions and other
classes of non-continuous functions.

1 Introduction

Recently, Ekici [10-12] has introduced new classes of sets called e-open
sets, e∗-open sets and a-open sets to establish some new decompositions
of continuous functions. By using new notions of e-continuous functions,
e∗-continuous functions and a-continuous functions via e-open sets, e∗-open
sets and a-open sets, respectively, Ekici has obtained some new decompo-
sitions of continuous functions. In this paper, we introduce new classes
of functions called (e∗, s)-continuous functions, (e, s)-continuous functions
and (a, s)-continuous functions which are generalizations of almost contra-
super-continuous functions. We obtain some characteizations and several
properties of such functions.

In this paper, spaces X and Y mean topological spaces on which no
separation axioms are assumed unless explicitly stated. For a subset P of
a space X, cl(P ) and int(P ) represent the closure of P and the interior of

2000 Mathematics Subject Classification. 54C08.
Key words and phrases.e-open set, e∗-open set, a-open set, (e∗, s)-continuous function,

(e, s)-continuous function, (a, s)-continuous function.
Received: November 8, 2006



32 Erdal Ekici

P , respectively. A subset P of a space X is said to be regular open (resp.
regular closed) if P = int(cl(P )) (resp. P = cl(int(P ))) [24]. The δ-interior
[26] of a subset P of X is the union of all regular open sets of X contained
in P and it is denoted by δ-int(P ). A subset P is called δ-open if P = δ-
int(P ). The complement of δ-open set is called δ-closed. The δ-closure of a
set P in a space (X, τ) is defined by δ-cl(P ) = {x ∈ X : P ∩ int(cl(U)) 6= ∅,
U ∈ τ and x ∈ U} and it is denoted by δ-cl(P ). A subset P is said to be
semi-open [15] (α-open [18]) if P ⊂ cl(int(P )) (P ⊂ int(cl(int(P )))). The
complement of a semi-open (resp. α-open) set is called semi-closed [5] (resp.
α-closed [18]). The intersection of all semi-closed sets containing P is called
the semi-closure of P and is denoted by s-cl(P ). A point x ∈ X is said to
be a θ-semi-cluster point [14] of a subset P of X if cl(U) ∩ P 6= ∅ for every
semi-open set U containing x. The set of all θ-semi-cluster points of P is
called the θ-semi-clusure of P and is denoted by θ-s-cl(P ). A subset P is
called θ-semi-closed if P = θ-s-cl(P ). The complement of a θ-semi-closed
set is called θ-semi-open.

A subset P of a space X is said to be preopen [17] (resp. β-open [1],
δ-preopen [22], δ-semiopen [21]) if P ⊂ int(cl(P )) (resp. P ⊂ cl(int(cl(P ))),
P ⊂ int(δ-cl(P )), P ⊂ cl(δ-int(P ))). The complement of a preopen (resp.
β-open, δ-semiopen, δ-preopen) set is called preclosed (resp. β-closed, δ-
semiclosed, δ-preclosed). The intersection of all preclosed (resp. α-closed)
sets, each containing a set S in a topological space X is called the preclosure
(resp. α-closure) of S and it is denoted by p-cl(S) (α-cl(S)). For a subset
R of a space X, the set ∩{P ∈ RO(X) : R ⊂ P} is called [6] the r-kernel of
R and is denoted by r-ker(R).

Lemma 1 ([6]) The following properties hold for P ⊂ X and R ⊂ X:
(1) x ∈r-ker(P ) if and only if P ∩ S 6= ∅ for any regular closed set S

containing x.
(2) P ⊂r-ker(P ) and P =r-ker(P ) if P is regular open in X.
(3) P ⊂ R, then r-ker(P ) ⊂r-ker(R).

Definition 2 A subset S of a space (X, τ) is called
(1) e-open [10] if S ⊂ cl(δ-int(S)) ∪ int(δ-cl(S)) and e-closed [10] if

cl(δ-int(S)) ∩ int(δ-cl(S)) ⊂ S,
(2) e∗-open [11] if S ⊂ cl(int(δ-cl(S))) and e∗-closed [11] if int(cl(δ-

int(S))) ⊂ S,
(3) a-open [12] if S ⊂ int(cl(δ-int(S))) and a-closed [12] if cl(int(δ-

cl(S))) ⊂ S.
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The family of all δ-open (resp. e∗-open, e∗-closed, regular open, regular
closed, semi-open, closed, e-open, a-open) sets of X containing a point x ∈ X
is denoted by δO(X,x) (resp. e∗O(X, x), e∗C(X,x), RO(X,x), RC(X,x),
SO(X,x), C(X, x), eO(X,x), aO(X, x)). The family of all δ-open (resp. e∗-
open, e∗-closed, regular open, regular closed, semi-open, β-open, preopen,
e-open, a-open) sets of X is denoted by δO(X) (resp. e∗O(X), e∗C(X),
RO(X), RC(X), SO(X), βO(X), PO(X), eO(X), aO(X)).

The union of any family of e∗-open (resp. e-open) sets is an e∗-open (resp.
e-open) set. The intersection of any family of e∗-closed (resp. e-closed) sets
is an e∗-closed (resp. e-closed) set [10, 11]. The intersection of all e∗-closed
(resp. e-closed, a-closed) sets containing P is called the e∗-closure [11] (resp.
e-closure [10], a-closure [12]) of P and is denoted by e∗-cl(P ) (resp. e-cl(P ),
a-cl(P )). The e∗-interior [11] (resp. e-interior [10], a-interior [12]) of P ,
denoted by e∗-int(P ) (resp. e-int(P ), a-int(P )), is defined by the union of
all e∗-open (resp. e-open, a-open) sets contained in P .

Lemma 3 ([11, 13]) The following hold for a subset P of a space X:
(1) e∗-cl(P ) (resp. e-cl(P ), a-cl(P )) is e∗-closed (resp. e-closed, a-

closed).
(2) X\e∗-cl(P ) = e∗-int(X\P ) and X\e-cl(P ) = e-int(X\P ) and X\a-

cl(P ) = a-int(X\P ).

Lemma 4 ([16]) s-cl(N) = int(cl(N)) for an open subset N of a space X.

2 Weak forms of almost contra-super-continuity

Definition 5 A function f : X → Y is called (e∗, s)-continuous (resp.
(e, s)-continuous, (a, s)-continuous) if the inverse image of each regular open
set of Y is e∗-closed (resp. e-closed, a-closed) in X.

Definition 6 A function f : X → Y is said to be
(1) contra R-map [9] if f−1(N) is regular closed in X for every regular

open set N of Y ,
(2) almost contra-super-continuous [7] if f−1(N) is δ-closed in X for

every regular open set N of Y ,
(3) (δ-semi, s)-continuous [6] if the inverse image of each regular open

set of Y is δ-semiclosed in X,
(4) (δ-pre, s)-continuous [8] if the inverse image of each regular open set

of Y is δ-preclosed in X.
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Remark 7 The following diagram holds for a function f : X → Y :

(e∗, s)-continuous
↑

(e, s)-continuous
↗ ↖

(δ-semi, s)-continuous (δ-pre, s)-continuous
↖ ↗

(a, s)-continuous
↑

almost contra-super-continuous
↑

contra R-map

None of these implications is reversible as shown in the following exam-
ples.

Example 8 Let X = {a, b, c, d} = Y and τ = {∅, X, {a}, {b}, {a, b},
{a, b, c}, {a, b, d}} and σ = {∅, X, {a}, {c}, {a, b}, {a, c}, {a, b, c}, {a, c, d}}.
Let f : (X, τ) → (Y, σ) be a function defined by f(a) = d, f(b) = d, f(c) = d,
f(d) = c. Then, f is (a, s)-continuous but it is not almost contra-super-
continuous.

Example 9 Let X = {a, b, c} and τ = {∅, X, {a}, {c}, {a, c}, {b, c}}. Let
f : X → X be a function defined by f(a) = b, f(b) = a, f(c) = c. Then, f
is (e, s)-continuous but it is not (δ-semi, s)-continuous.

Example 10 Let X = {a, b, c, d} and τ = {∅, X, {a}, {c}, {a, b}, {a, c},
{a, b, c}, {a, c, d}}. Then the identitiy function i : X → X is (δ-semi, s)-
continuous but it is not (a, s)-continuous. The function f : X → X defined
by f(a) = a, f(b) = c, f(c) = a, f(d) = c is (e∗, s)-continuous but it is not
(e, s)-continuous.

Example 11 Let X = {a, b, c, d} and τ = {∅, X, {a, d}, {c}, {a, c, d}}. Let
f : X → X be a function defined by f(a) = d, f(b) = a, f(c) = b, f(d) = c.
Then, f is (δ-pre, s)-continuous but it is not (a, s)-continuous.

Example 12 Let X = {a, b, c} and τ = {∅, X, {a}, {b}, {a, b}}. Then the
identity function i : X → X is (e, s)-continuous but it is not (δ-pre, s)-
continuous.
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Definition 13 A function f : X → Y is said to be:
(1) e∗-continuous [11] if f−1(N) is e∗-open in X for every open set N

of Y .
(2) almost e∗-continuous [13] (resp. almost e-continuous [13], almost a-

continuous [13]) if f−1(N) is e∗-open (resp. e-open, a-open) in X for every
regular open set N of Y .

A topological space (X, τ) is said to be extremally disconnected [4] if the
closure of every open set of X is open in X.

Theorem 14 Let (Y, σ) be extremally disconnected. The following are equiv-
alent for a function f : (X, τ) → (Y, σ):

(1) f is (e∗, s)-continuous,
(2) f is almost e∗-continuous.

Proof. (1) ⇒ (2) : Let U ∈ RO(Y ). Since Y is extremally disconnected,
by Lemma 5.6 of [20] U is clopen. Since U is regular closed, then f−1(U) is
e∗-open. Hence, f is almost e∗-continuous.

(2) ⇒ (1) : Let S ∈ RC(Y ). Since Y is extremally disconnected, S is
regular open. Thus, f−1(S) is e∗-open and hence f is (e∗, s)-continuous.

Definition 15 A space (X, τ) is called e∗-T1/2 [13] if every e∗-closed set is
δ-closed.

Theorem 16 Let f : X → Y be a function from an e∗-T1/2 space X to a
topological space Y . The following are equivalent:

(1) f is (e∗, s)-continuous,
(2) f is (e, s)-continuous,
(3) f is (δ-semi, s)-continuous,
(4) f is (δ-pre, s)-continuous,
(5) f is (a, s)-continuous,
(6) f is almost contra-super-continuous.

Theorem 17 Let Y be a regular space and f : X → Y be a function. If f
is (e∗, s)-continuous, then f is e∗-continuous.

Proof. Let x ∈ X and N be an open set of Y containing f(x). Since
Y is regular, there exists an open set G in Y containing f(x) such that
cl(G) ⊂ N . Since f is (e∗, s)-continuous, there exists U ∈ e∗O(X,x) such
that f(U) ⊂ cl(G). Thus, f(U) ⊂ cl(G) ⊂ N and hence f is e∗-continuous.
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Definition 18 A function f : X → Y is said to be e∗-irresolute [13] (resp.
e-irresolute, a-irresolute) if f−1(N) is e∗-open (resp. e-open, a-open) in X
for every N ∈ e∗O(Y ) (resp. N ∈ eO(Y ), N ∈ aO(Y )).

Theorem 19 Let f : X → Y and g : Y → Z be functions. Then, the
following properties hold:

(1) If f is e∗-irresolute and g is (e∗, s)-continuous, then g ◦ f is (e∗, s)-
continuous.

(2) If f is (e∗, s)-continuous and g is contra R-map, then g ◦ f is almost
e∗-continuous.

(3) If f is e∗-continuous and g is almost contra-super-continuous, then
g ◦ f is (e∗, s)-continuous.

(4) If f is e∗-irresolute and g is e∗-irresolute, then g ◦ f is e∗-irresolute.
(5) If f is almost e∗-continuous and g is contra R-map, then g ◦ f is

(e∗, s)-continuous.

Theorem 20 The following are equivalent for a function f : X → Y :
(a) f is (e∗, s)-continuous (resp. (e, s)-continuous, (a, s)-continuous),
(b) the inverse image of a regular closed set of Y is e∗-open (resp. e-open,

a-open),
(c) f(e∗-cl(U)) ⊂r-ker(f(U)) (resp. f(e-cl(U)) ⊂r-ker(f(U)), f(a-

cl(U)) ⊂r-ker(f(U))) for every U ⊂ X,
(d) e∗-cl(f−1(N)) ⊂ f−1(r-ker(N)) (resp. e-cl(f−1(N)) ⊂ f−1(r-ker(N)),

a-cl(f−1(N)) ⊂ f−1(r-ker(N))) for every N ⊂ Y ,
(e) for each x ∈ X and each N ∈ SO(Y, f(x)), there exists an e∗-open

(resp. e-open, a-open) set U in X containing x such that f(U) ⊂ cl(N),
(f) f(e∗-cl(P )) ⊂ θ-s-cl(f(P )) (resp. f(e-cl(P )) ⊂ θ-s-cl(f(P )), f(a-

cl(P )) ⊂ θ-s-cl(f(P ))) for every P ⊂ X,
(g) e∗-cl(f−1(R)) ⊂ f−1(θ-s-cl(R)) (resp. e-cl(f−1(R)) ⊂ f−1(θ-s-

cl(R)), a-cl(f−1(R)) ⊂ f−1(θ-s-cl(R))) for every R ⊂ Y ,
(h) e∗-cl(f−1(N)) ⊂ f−1(θ-s-cl(N)) (resp. e-cl(f−1(N)) ⊂ f−1(θ-s-

cl(N)), a-cl(f−1(N)) ⊂ f−1(θ-s-cl(N))) for every open subset N of Y ,
(i) e∗-cl(f−1(N)) ⊂ f−1(s-cl(N)) (resp. e-cl(f−1(N)) ⊂ f−1(s-cl(N)),

a-cl(f−1(N)) ⊂ f−1(s-cl(N))) for every open subset N of Y ,
(j) e∗-cl(f−1(N)) ⊂ f−1(int(cl(N))) (resp. e-cl(f−1(N)) ⊂
⊂ f−1(int(cl(N))), a-cl(f−1(N)) ⊂ f−1(int(cl(N)))) for every open sub-

set N of Y ,
(k) the inverse image of a θ-semi-open set of Y is e∗-open (resp. e-open,

a-open),
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(l) f−1(N) ⊂ e∗-int(f−1(cl(N))) (resp. f−1(N) ⊂ e-int(f−1(cl(N))),
f−1(N) ⊂ a-int(f−1(cl(N)))) for every N ∈ SO(Y ),

(m) the inverse image of a θ-semi-closed set of Y is e∗-closed (resp.
e-closed, a-closed),

(n) f−1(int(cl(N))) is e∗-closed (resp. e-closed, a-closed) for every open
subset N of Y ,

(o) f−1(cl(int(F ))) is e∗-open (resp. e-open, a-open) for every closed
subset F of Y ,

(p) f−1(cl(U)) is e∗-open (resp. e-open, a-open) in X for every U ∈
βO(Y ),

(r) f−1(cl(U)) is e∗-open (resp. e-open, a-open) in X for every U ∈
SO(Y ),

(s) f−1(int(cl(U))) is e∗-closed (resp. e-closed, a-closed) in X for every
U ∈ PO(Y ).

Proof. We prove only for (e∗, s)-continuity, the proofs for (e, s)-continuity
and (a, s)-continuity being entirely analogous.

(a) ⇔ (b) : Obvious.
(b) ⇒ (c) : Let U ⊂ X. Let y /∈r-ker(f(U)). There exists a regular closed

set F containing y such that f(U) ∩ F = ∅. We have U ∩ f−1(F ) = ∅ and
e∗-cl(U) ∩ f−1(F ) = ∅. Thus, f(e∗-cl(U)) ∩ F = ∅ and y /∈ f(e∗-cl(U)).
Hence, f(e∗-cl(U)) ⊂r-ker(f(U)).

(c) ⇒ (d) : Let N ⊂ Y . By (c), f(e∗-cl(f−1(N))) ⊂r-ker(N). Thus,
e∗-cl(f−1(N)) ⊂ f−1(r-ker(N)).

(d) ⇒ (a) : Let N ∈ RO(Y ). By Lemma 1, e∗-cl(f−1(N) ⊂ f−1(r-
ker(N)) = f−1(N) and e∗-cl((f−1(N)) = f−1(N). Hence, f−1(N) is e∗-
closed in X.

(e) ⇒ (f) : Let P ⊂ X and x ∈ e∗-cl(P ) and G ∈ SO(Y, f(x)). By (e),
there exists U ∈ e∗O(X, x) such that f(U) ⊂ cl(G). Since x ∈ e∗-cl(P ),
U ∩ P 6= ∅ and ∅ 6= f(U) ∩ f(P ) ⊂ cl(G) ∩ f(P ). Thus, f(x) ∈ θ-s-cl(f(P ))
and hence f(e∗-cl(P )) ⊂ θ-s-cl(f(P )).

(f) ⇒ (g) : Let R ⊂ Y . We have f(e∗-cl(f−1(R))) ⊂ θ-s-cl(f(f−1(R))) ⊂
θ-s-cl(R) and e∗-cl(f−1(R)) ⊂ f−1(θ-s-cl(R)).

(g) ⇒ (e) : Let N ∈ SO(Y, f(x)). Since cl(N) ∩ (Y \cl(N)) = ∅, then
f(x) /∈ θ-s-cl(Y \cl(N)) and x /∈ f−1(θ-s-cl(Y \cl(N))). By (g), x /∈ e∗-
cl(f−1(Y \cl(N))) and hence there exists U ∈ e∗O(X, x) such that U ∩
f−1(Y \cl(N)) = ∅ and f(U) ∩ (Y \cl(N)) = ∅. It follows that f(U) ⊂
cl(N).

(g) ⇒ (h) : Obvious.
(h) ⇒ (i) : Since θ-s-cl(N) = s-cl(N) for an open set N , it is obvious.
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(i) ⇒ (j) : It follows from Lemma 4.
(j) ⇒ (a) : Let N ∈ RO(Y ). By (j), e∗-cl(f−1(N)) ⊂ f−1(int(cl(N))) =

f−1(N). Hence, f−1(N) is e∗-closed and hence f is (e∗, s)-continous.
(b) ⇒ (k) : Since any θ-semi-open set is a union of regular closed sets, it

holds.
(k) ⇒ (e) : Let x ∈ X and N ∈ SO(Y, f(x)). Since cl(N) is θ-semi-open

in Y , there exists an e∗-open set U such that x ∈ U ⊂ f−1(cl(N)). Hence,
f(U) ⊂ cl(N).

(e) ⇒ (l) : Let N ∈ SO(Y ) and x ∈ f−1(N). We have f(x) ∈ N and
there exists an e∗-open set U in X containing x such that f(U) ⊂ cl(N).
We have x ∈ U ⊂ f−1(cl(N)) and hence x ∈ e∗-int(f−1(cl(N))). Thus,
f−1(N) ⊂ e∗-int(f−1(cl(N))).

(l) ⇒ (b) : Let F be any regular closed set of Y . Since F ∈ SO(Y ), then
f−1(F ) ⊂ e∗-int(f−1(F )). This shows that f−1(F ) is e∗-open in X.

(k) ⇔ (m) : It is obvious.
(a) ⇔ (n) : Let N be an open subset of Y . Since int(cl(N)) is regular

open, f−1(int(cl(N))) is e∗-closed. The converse is similar.
(b) ⇔ (o) : It is obvious.
(b) ⇒ (p) : Let U ∈ βO(Y ). By Theorem 2.4 [2], cl(U) is regular closed

and hence f−1(cl(U)) ∈ e∗O(X).
(p) ⇒ (r) : Since SO(Y ) ⊂ βO(Y ), it is obvious.
(r) ⇒ (s) : Let U ∈ PO(Y ). Since Y \int(cl(U)) is regular closed and

hence it is semiopen, we have X\f−1(int(cl(U)) = f−1(Y \int(cl(U))) =
f−1(cl(Y \int(cl(U)))) ∈ e∗O(X). Thus, f−1(int(cl(U))) is e∗-closed.

(s) ⇒ (a) : Let U ∈ RO(Y ) Then U ∈ PO(Y ) and hence f−1(U) =
f−1(int(cl(U))) is e∗-closed in X.

Lemma 21 ([19]) The following properties hold for a subset P of a space
X:

(1) α-cl(P ) = cl(P ) for every P ∈ βO(X),
(2) p-cl(P ) = cl(P ) for every P ∈ SO(X).

Corollary 22 The following are equivalent for a function f : X → Y :
(1) f is (e∗, s)-continuous (resp. (e, s)-continuous, (a, s)-continuous),
(2) f−1(α-cl(N)) is e∗-open (resp. e-open, a-open) in X for every N ∈

βO(Y ),
(3) f−1(p-cl(N)) is e∗-open (resp. e-open, a-open) in X for every N ∈

SO(Y ),
(4) f−1(s-cl(N)) is e∗-closed (resp. e-closed, a-closed) in X for every

N ∈ PO(Y ),
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(5) e∗-cl(f−1(R)) ⊂ f−1(θ-s-cl(R)) (resp. e-cl(f−1(R)) ⊂ f−1(θ-s-
cl(R)), a-cl(f−1(R)) ⊂ f−1(θ-s-cl(R))) for every R ∈ SO(Y ),

(6) e∗-cl(f−1(R)) ⊂ f−1(θ-s-cl(R)) (resp. e-cl(f−1(R)) ⊂ f−1(θ-s-
cl(R)), a-cl(f−1(R)) ⊂ f−1(θ-s-cl(R))) for every R ∈ PO(Y ),

(7) e∗-cl(f−1(R)) ⊂ f−1(θ-s-cl(R)) (resp. e-cl(f−1(R)) ⊂ f−1(θ-s-
cl(R)), a-cl(f−1(R)) ⊂ f−1(θ-s-cl(R))) for every R ∈ βO(Y ).

Proof. It follows from Lemma 21, Lemma 4 and Theorem 20.

Definition 23 A subset P of a topological space X is said to be e∗-dense
(resp. e-dense) in X if e∗-cl(P ) = X (resp. e-cl(P ) = X).

A space X is said to be s-Urysohn [3] if for each pair of distinct points
x and y in X, there exist M ∈ SO(X, x) and N ∈ SO(X, y) such that
cl(M) ∩ cl(N) = ∅.

Lemma 24 ([7]) Let f : X → Y be a function. If f is almost contra-super-
continuous, then for each x ∈ X and for each V ∈ SO(Y, f(x)), there exists
a δ-open set U in X containing x such that f(U) ⊂ cl(V ).

Lemma 25 ([13]) Let X be a space and A, B ⊂ X. If A ∈ δO(X) and B ∈
e∗O(X) (resp. B ∈ eO(X)), then A∩B ∈ e∗O(X) (resp. A∩B ∈ eO(X)).

Theorem 26 Let f , g : X → Y be functions. If f is (e∗, s)-continuous
(resp. (e, s)-continuous) and g is almost contra-super-continuous and Y is
s-Urysohn, then P = {x ∈ X : f(x) = g(x)} is e∗-closed (resp. e-closed) in
X.

Proof. Let x ∈ X\P . We have f(x) 6= g(x). Since Y is s-Urysohn, there
exist M ∈ SO(Y, f(x)) and N ∈ SO(Y, g(x)) such that cl(M) ∩ cl(N) = ∅.
Since f is (e∗, s)-continuous and g is almost contra-super-continuous, there
exist an e∗-open set K and a δ-open set L containing x such that f(K) ⊂
cl(M) and g(L) ⊂ cl(N). Thus, K ∩ L = S ∈ e∗O(X), f(S) ∩ g(S) = ∅ and
hence x /∈ e∗-cl(P ). Hence, P is e∗-closed in X.

Theorem 27 Let X and Y be topological spaces. If Y is s-Urysohn, f :
X → Y and g : X → Y are (e∗, s)-continuous (resp. (e, s)-continuous)
and almost contra-super-continuous functions, respectively and f = g on
e∗-dense (resp. e-dense) set P ⊂ X, then f = g on X.
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Proof. Let f and g be (e∗, s)-continuous and almost contra-super-
continuous functions, respectively and Y be s-Urysohn. Then R = {x ∈
X : f(x) = g(x)} is e∗-closed in X. Since P ⊂ R and P is e∗-dense set in
X, X = e∗-cl(P ) ⊂ e∗-cl(R) = R. Thus, f = g on X.

Definition 28 Let X be a topological space and P ⊂ X. The e∗-frontier
(resp. e-frontier, a-frontier) of P is given by e∗-fr(P ) = e∗-cl(P ) ∩ e∗-
cl(X\P ) (resp. e-fr(P ) = e-cl(P ) ∩ e-cl(X\P ), a-fr(P ) = a-cl(P ) ∩ a-
cl(X\P )).

Theorem 29 Let f : X → Y be a function. Then f is not (e∗, s)-continuous
(resp. (e, s)-continuous, (a, s)-continuous) at x if and only if x ∈ e∗-
fr(f−1(F )) (resp. x ∈ e-fr(f−1(F )), x ∈ a-fr(f−1(F ))) for some F ∈
RC(Y, f(x)).

Proof. (⇒) : Suppose that f is not (e∗, s)-continuous at x. There exists
F ∈ RC(Y, f(x)) such that f(U) * F for every U ∈ e∗O(X, x). For every
U ∈ e∗O(X, x), we have f(U)∩ (Y \F ) 6= ∅. Thus, U ∩ (X\f−1(F )) 6= ∅ for
every U ∈ e∗O(X, x) and hence x ∈ e∗-cl(X\f−1(F )). Since x ∈ f−1(F ),
x ∈ e∗-fr(f−1(F )).

(⇐) : Let x ∈ X. Suppose that there exists F ∈ RC(Y, f(x)) such that
x ∈ e∗-fr(f−1(F )) and that f is (e∗, s)-continuous at x. There exists an e∗-
open set U such that x ∈ U and U ⊂ f−1(F ). Thus, x /∈ e∗-cl(X\f−1(F )).
This is a contradiction. Hence, f is not (e∗, s)-continuous at x.

3 Further properties

Definition 30 A subset S of a space X is said to be e∗-compact (resp. e-
compact, a-compact) relative to X if for every cover {Pi : i ∈ I} of S by
e∗-open (resp. e-open, a-open) sets of X, there exists a finite subset I0 of I
such that S ⊂ ∪{Pi : i ∈ I0}. A space X said to be e∗-compact [13] (resp. e-
compact [13], a-compact [13]) if every e∗-open (resp. e-open, a-open) cover
of X has a finite subcover.

Theorem 31 Every e∗-closed (resp. e-closed, a-closed) subset P of an
e∗-compact (resp. e-compact, a-compact) space X is e∗-compact (resp. e-
compact, a-compact) relative to X.
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Proof. Let P ⊂ X be e∗-closed and X be an e∗-compact space. Let
{Mi : i ∈ I} be a cover of P by e∗-open subsets of X. This implies that
P ⊂ ∪

i∈I
Mi and (X\P ) ∪ ( ∪

i∈I
Mi) = X. Since X is e∗-compact, there exists

a finite subset I0 of I such that (X\P ) ∪ ( ∪
i∈I0

Mi) = X. Thus P ⊂ ∪
i∈I0

Mi

and hence P is e∗-compact relative to X.
A space X said to be S-closed [25] if every regular closed cover of X has

a finite subcover.

Theorem 32 The surjective (e∗, s)-continuous (resp. (e, s)-continuous, (a, s)-
continuous) image of an e∗-compact (resp. e-compact, a-compact) space is
S-closed.

Proof. Let X be an e∗-compact space and f : X → Y be a surjective
(e∗, s)-continuous function. Let {Mi : i ∈ I} be a cover of Y by regular
closed sets. Since f is (e∗, s)-continuous, then {f−1(Mi) : i ∈ I} is a cover
of X by e∗-open sets. Since X is e∗-compact, there exists a finite subset I0

of I such that X = ∪
i∈I0

f−1(Mi). Since f is surjective, Y = ∪
i∈I0

Mi. Thus, Y

is S-closed.

Theorem 33 If f : X → Y is e∗-irresolute (resp. e-irresolute, a-irresolute)
and P ⊂ X is e∗-compact (resp. e-compact, a-compact) relative to X, then
its image f(P ) is e∗-compact (resp. e-compact, a-compact) relative to Y .

Proof. It is similar to that of Theorem 32.

Definition 34 A space X is said to be e∗-T1 (resp. e-T1, a-T1) if for each
pair of distinct points in X, there exist e∗-open (resp. e-open, a-open) sets
M and N containing x and y, respectively, such that y /∈ M and x /∈ N .

A space X is said to be weakly Hausdorff [23] if each element of X is an
intersection of regular closed sets.

Theorem 35 Let f : X → Y be a function. If f is a (e∗, s)-continuous
(resp. (e, s)-continuous, (a, s)-continuous) injection and Y is weakly Haus-
dorff, then X is e∗-T1 (resp. e-T1, a-T1).

Proof. For x 6= y in X, there exist P , R ∈ RC(Y ) such that f(x) ∈ P ,
f(y) /∈ P , f(x) /∈ R and f(y) ∈ R. Since f is (e∗, s)-continuous, f−1(P )
and f−1(R) are e∗-open subsets of X such that x ∈ f−1(P ), y /∈ f−1(P ),
x /∈ f−1(R) and y ∈ f−1(R). Thus, X is e∗-T1.
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Definition 36 A space X is said to be e∗-T2 [13] (resp. e-T2 [13], a-T2 [13])
if for each pair of distinct points x and y in X, there exist M ∈ e∗O(X, x)
(resp. M ∈ eO(X,x), M ∈ aO(X, x)) and N ∈ e∗O(X, y) (resp. N ∈
eO(X, y), N ∈ aO(X, y)) such that M ∩N = ∅.

Theorem 37 Let f : X → Y be a function. If f is a (e∗, s)-continuous
(resp. (e, s)-continuous, (a, s)-continuous) injection and Y is s-Urysohn,
then X is e∗-T2 (resp. e-T2, a-T2).

Proof. Let Y be s-Urysohn. For any distinct points x and y in X,
f(x) 6= f(y). Since Y is s-Urysohn, there exist P ∈ SO(Y, f(x)) and R ∈
SO(Y, f(y)) such that cl(P ) ∩ cl(R) = ∅. Since f is a (e∗, s)-continuous,
there exist e∗-open sets A and B in X containing x and y, respectively, such
that f(A) ⊂ cl(P ) and f(B) ⊂ cl(R) such that A∩B = ∅. Thus, X is e∗-T2.
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