Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat **21:2** (2007), 31–44

SOME GENERALIZATONS OF ALMOST CONTRA-SUPER-CONTINUITY

Erdal Ekici

Abstract

We introduced and studied some new classes of functions called (e^*, s) -continuous functions, (e, s)-continuous functions and (a, s)-continuous functions. These new notions of functions generalize the class of almost contra-super-continuous functions. Some properties and several characterizations of these types of functions are obtained. We investigate the relationships between these classes of functions and other classes of non-continuous functions.

1 Introduction

Recently, Ekici [10-12] has introduced new classes of sets called *e*-open sets, e^* -open sets and *a*-open sets to establish some new decompositions of continuous functions. By using new notions of *e*-continuous functions, e^* -continuous functions and *a*-continuous functions via *e*-open sets, e^* -open sets and *a*-open sets, respectively, Ekici has obtained some new decompositions of continuous functions. In this paper, we introduce new classes of functions called (e^* , s)-continuous functions, (e, s)-continuous functions and (a, s)-continuous functions. We obtain some characteizations and several properties of such functions.

In this paper, spaces X and Y mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset P of a space X, cl(P) and int(P) represent the closure of P and the interior of

²⁰⁰⁰ Mathematics Subject Classification. 54C08.

Key words and phrases.e-open set, e^* -open set, a-open set, (e^*, s) -continuous function, (e, s)-continuous function, (a, s)-continuous function.

Received: November 8, 2006

P, respectively. A subset P of a space X is said to be regular open (resp. regular closed) if P = int(cl(P)) (resp. P = cl(int(P))) [24]. The δ -interior [26] of a subset P of X is the union of all regular open sets of X contained in P and it is denoted by δ -int(P). A subset P is called δ -open if $P = \delta$ int(P). The complement of δ -open set is called δ -closed. The δ -closure of a set P in a space (X, τ) is defined by $\delta - cl(P) = \{x \in X : P \cap int(cl(U)) \neq \emptyset, \}$ $U \in \tau$ and $x \in U$ and it is denoted by δ -cl(P). A subset P is said to be semi-open [15] (α -open [18]) if $P \subset cl(int(P))$ ($P \subset int(cl(int(P)))$). The complement of a semi-open (resp. α -open) set is called semi-closed [5] (resp. α -closed [18]). The intersection of all semi-closed sets containing P is called the semi-closure of P and is denoted by s - cl(P). A point $x \in X$ is said to be a θ -semi-cluster point [14] of a subset P of X if $cl(U) \cap P \neq \emptyset$ for every semi-open set U containing x. The set of all θ -semi-cluster points of P is called the θ -semi-clusure of P and is denoted by θ -s-cl(P). A subset P is called θ -semi-closed if $P = \theta$ -s-cl(P). The complement of a θ -semi-closed set is called θ -semi-open.

A subset P of a space X is said to be preopen [17] (resp. β -open [1], δ -preopen [22], δ -semiopen [21]) if $P \subset int(cl(P))$ (resp. $P \subset cl(int(cl(P)))$), $P \subset int(\delta - cl(P))$, $P \subset cl(\delta - int(P))$). The complement of a preopen (resp. β -open, δ -semiopen, δ -preopen) set is called preclosed (resp. β -closed, δ semiclosed, δ -preclosed). The intersection of all preclosed (resp. α -closed) sets, each containing a set S in a topological space X is called the preclosure (resp. α -closure) of S and it is denoted by p-cl(S) (α -cl(S)). For a subset R of a space X, the set $\cap \{P \in RO(X) : R \subset P\}$ is called [6] the r-kernel of R and is denoted by r-ker(R).

Lemma 1 ([6]) The following properties hold for $P \subset X$ and $R \subset X$:

(1) $x \in r$ -ker(P) if and only if $P \cap S \neq \emptyset$ for any regular closed set S containing x.

(2) $P \subset r\text{-}ker(P)$ and P = r-ker(P) if P is regular open in X. (3) $P \subset R$, then $r\text{-}ker(P) \subset r\text{-}ker(R)$.

Definition 2 A subset S of a space (X, τ) is called

(1) e-open [10] if $S \subset cl(\delta \text{-int}(S)) \cup int(\delta \text{-}cl(S))$ and e-closed [10] if $cl(\delta \text{-int}(S)) \cap int(\delta \text{-}cl(S)) \subset S$,

(2) e^* -open [11] if $S \subset cl(int(\delta - cl(S)))$ and e^* -closed [11] if $int(cl(\delta - int(S))) \subset S$,

(3) a-open [12] if $S \subset int(cl(\delta - int(S)))$ and a-closed [12] if $cl(int(\delta - cl(S))) \subset S$.

The family of all δ -open (resp. e^* -open, e^* -closed, regular open, regular closed, semi-open, closed, e-open, a-open) sets of X containing a point $x \in X$ is denoted by $\delta O(X, x)$ (resp. $e^*O(X, x)$, $e^*C(X, x)$, RO(X, x), RC(X, x), SO(X, x), C(X, x), eO(X, x), aO(X, x)). The family of all δ -open (resp. e^* -open, e^* -closed, regular open, regular closed, semi-open, β -open, preopen, e-open, a-open) sets of X is denoted by $\delta O(X)$ (resp. $e^*O(X)$, $e^*C(X)$, RO(X), RC(X), SO(X), $\beta O(X)$, PO(X), eO(X), aO(X)).

The union of any family of e^* -open (resp. e-open) sets is an e^* -open (resp. e-open) set. The intersection of any family of e^* -closed (resp. e-closed) sets is an e^* -closed (resp. e-closed) set [10, 11]. The intersection of all e^* -closed (resp. e-closed) sets containing P is called the e^* -closure [11] (resp. e-closure [10], a-closure [12]) of P and is denoted by e^* -cl(P) (resp. e-cl(P), a-cl(P)). The e^* -interior [11] (resp. e-interior [10], a-interior [12]) of P, denoted by e^* -int(P) (resp. e-int(P), a-int(P)), is defined by the union of all e^* -open (resp. e-open, a-open) sets contained in P.

Lemma 3 ([11, 13]) The following hold for a subset P of a space X:

(1) e^* -cl(P) (resp. e-cl(P), a-cl(P)) is e^* -closed (resp. e-closed, a-closed).

(2) $X \setminus e^* - cl(P) = e^* - int(X \setminus P)$ and $X \setminus e - cl(P) = e - int(X \setminus P)$ and $X \setminus e^- - cl(P) = a - int(X \setminus P)$.

Lemma 4 ([16]) s-cl(N) = int(cl(N)) for an open subset N of a space X.

2 Weak forms of almost contra-super-continuity

Definition 5 A function $f : X \to Y$ is called (e^*, s) -continuous (resp. (e, s)-continuous, (a, s)-continuous) if the inverse image of each regular open set of Y is e^* -closed (resp. e-closed, a-closed) in X.

Definition 6 A function $f: X \to Y$ is said to be

(1) contra R-map [9] if $f^{-1}(N)$ is regular closed in X for every regular open set N of Y,

(2) almost contra-super-continuous [7] if $f^{-1}(N)$ is δ -closed in X for every regular open set N of Y,

(3) $(\delta$ -semi, s)-continuous [6] if the inverse image of each regular open set of Y is δ -semiclosed in X,

(4) $(\delta$ -pre, s)-continuous [8] if the inverse image of each regular open set of Y is δ -preclosed in X.

Remark 7 The following diagram holds for a function $f: X \to Y$:

None of these implications is reversible as shown in the following examples.

Example 8 Let $X = \{a, b, c, d\} = Y$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = d, f(b) = d, f(c) = d, f(d) = c. Then, f is (a, s)-continuous but it is not almost contra-supercontinuous.

Example 9 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}$. Let $f: X \to X$ be a function defined by f(a) = b, f(b) = a, f(c) = c. Then, f is (e, s)-continuous but it is not $(\delta$ -semi, s)-continuous.

Example 10 Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. Then the identity function $i : X \to X$ is $(\delta$ -semi, s)-continuous but it is not (a, s)-continuous. The function $f : X \to X$ defined by f(a) = a, f(b) = c, f(c) = a, f(d) = c is (e^*, s) -continuous but it is not (e, s)-continuous.

Example 11 Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, d\}, \{c\}, \{a, c, d\}\}$. Let $f: X \to X$ be a function defined by f(a) = d, f(b) = a, f(c) = b, f(d) = c. Then, f is $(\delta$ -pre, s)-continuous but it is not (a, s)-continuous.

Example 12 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then the identity function $i : X \to X$ is (e, s)-continuous but it is not $(\delta$ -pre, s)-continuous.

Definition 13 A function $f : X \to Y$ is said to be:

(1) e^* -continuous [11] if $f^{-1}(N)$ is e^* -open in X for every open set N of Y.

(2) almost e^* -continuous [13] (resp. almost e-continuous [13], almost acontinuous [13]) if $f^{-1}(N)$ is e^* -open (resp. e-open, a-open) in X for every regular open set N of Y.

A topological space (X, τ) is said to be extremally disconnected [4] if the closure of every open set of X is open in X.

Theorem 14 Let (Y, σ) be extremally disconnected. The following are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$:

(1) f is (e^*, s) -continuous,

(2) f is almost e^* -continuous.

Proof. (1) \Rightarrow (2) : Let $U \in RO(Y)$. Since Y is extremally disconnected, by Lemma 5.6 of [20] U is clopen. Since U is regular closed, then $f^{-1}(U)$ is e^* -open. Hence, f is almost e^* -continuous.

 $(2) \Rightarrow (1)$: Let $S \in RC(Y)$. Since Y is extremally disconnected, S is regular open. Thus, $f^{-1}(S)$ is e^* -open and hence f is (e^*, s) -continuous.

Definition 15 A space (X, τ) is called e^* - $T_{1/2}$ [13] if every e^* -closed set is δ -closed.

Theorem 16 Let $f : X \to Y$ be a function from an e^* - $T_{1/2}$ space X to a topological space Y. The following are equivalent:

f is (e*, s)-continuous,
f is (e, s)-continuous,
f is (δ-semi, s)-continuous,
f is (δ-pre, s)-continuous,
f is (a, s)-continuous,
f is almost contra-super-continuous.

Theorem 17 Let Y be a regular space and $f : X \to Y$ be a function. If f is (e^*, s) -continuous, then f is e^* -continuous.

Proof. Let $x \in X$ and N be an open set of Y containing f(x). Since Y is regular, there exists an open set G in Y containing f(x) such that $cl(G) \subset N$. Since f is (e^*, s) -continuous, there exists $U \in e^*O(X, x)$ such that $f(U) \subset cl(G)$. Thus, $f(U) \subset cl(G) \subset N$ and hence f is e^* -continuous.

Definition 18 A function $f: X \to Y$ is said to be e^* -irresolute [13] (resp. e-irresolute, a-irresolute) if $f^{-1}(N)$ is e^* -open (resp. e-open, a-open) in X for every $N \in e^*O(Y)$ (resp. $N \in eO(Y)$, $N \in aO(Y)$).

Theorem 19 Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then, the following properties hold:

(1) If f is e^* -irresolute and g is (e^*, s) -continuous, then $g \circ f$ is (e^*, s) -continuous.

(2) If f is (e^*, s) -continuous and g is contra R-map, then $g \circ f$ is almost e^* -continuous.

(3) If f is e^* -continuous and g is almost contra-super-continuous, then $g \circ f$ is (e^*, s) -continuous.

(4) If f is e^* -irresolute and g is e^* -irresolute, then $g \circ f$ is e^* -irresolute.

(5) If f is almost e^* -continuous and g is contra R-map, then $g \circ f$ is (e^*, s) -continuous.

Theorem 20 The following are equivalent for a function $f: X \to Y$:

(a) f is (e^*, s) -continuous (resp. (e, s)-continuous, (a, s)-continuous),

(b) the inverse image of a regular closed set of Y is e^* -open (resp. e-open, a-open),

 $\begin{array}{ll} (c) \ f(e^* - cl(U)) \ \sub{r-ker}(f(U)) \ (resp. \ f(e - cl(U)) \ \sub{r-ker}(f(U)), \ f(a - cl(U)) \ \sub{r-ker}(f(U))) \ for \ every \ U \ \sub{X}, \end{array}$

 $\begin{array}{l} (d) \ e^* \ cl(f^{-1}(N)) \subset f^{-1}(r \ ker(N)) \ (resp. \ e \ cl(f^{-1}(N)) \subset f^{-1}(r \ ker(N)), \\ a \ cl(f^{-1}(N)) \subset f^{-1}(r \ ker(N))) \ for \ every \ N \subset Y, \end{array}$

(e) for each $x \in X$ and each $N \in SO(Y, f(x))$, there exists an e^* -open (resp. e-open, a-open) set U in X containing x such that $f(U) \subset cl(N)$,

(f) $f(e^*-cl(P)) \subset \theta$ -s-cl(f(P)) (resp. $f(e-cl(P)) \subset \theta$ -s-cl(f(P))), $f(a-cl(P)) \subset \theta$ -s-cl(f(P))) for every $P \subset X$,

(g) $e^* - cl(f^{-1}(R)) \subset f^{-1}(\theta - s - cl(R))$ (resp. $e - cl(f^{-1}(R)) \subset f^{-1}(\theta - s - cl(R))$), $a - cl(f^{-1}(R)) \subset f^{-1}(\theta - s - cl(R))$) for every $R \subset Y$,

(h) $e^* - cl(f^{-1}(N)) \subset f^{-1}(\theta - s - cl(N))$ (resp. $e - cl(f^{-1}(N)) \subset f^{-1}(\theta - s - cl(N))$), $a - cl(f^{-1}(N)) \subset f^{-1}(\theta - s - cl(N))$) for every open subset N of Y,

 $\begin{array}{l} (i) \ e^* \text{-}cl(f^{-1}(N)) \subset f^{-1}(s\text{-}cl(N)) \ (resp. \ e\text{-}cl(f^{-1}(N)) \subset f^{-1}(s\text{-}cl(N)), \\ a\text{-}cl(f^{-1}(N)) \subset f^{-1}(s\text{-}cl(N))) \ for \ every \ open \ subset \ N \ of \ Y, \end{array}$

(j) $e^* - cl(f^{-1}(N)) \subset f^{-1}(int(cl(N)))$ (resp. $e^- cl(f^{-1}(N)) \subset f^{-1}(int(cl(N)))$)

 $(j) e^{-\alpha}(j) (N) = j (m(\alpha(N))) (resp. e^{-\alpha}(j) (N)) = (-1(i) (resp. e^{-\alpha}(j) (N))) = (-1(i) (resp. e^{-\alpha}(j) (resp. e^{-\alpha}(j))) = (-1(i) (resp. e^{-\alpha}(j) (resp. e^{-\alpha}(j)))$

 $\subset f^{-1}(int(cl(N))), a - cl(f^{-1}(N)) \subset f^{-1}(int(cl(N))))$ for every open subset N of Y,

(k) the inverse image of a θ -semi-open set of Y is e^{*}-open (resp. e-open, a-open),

(l) $f^{-1}(N) \subset e^* - int(f^{-1}(cl(N)))$ (resp. $f^{-1}(N) \subset e - int(f^{-1}(cl(N)))$), $f^{-1}(N) \subset a - int(f^{-1}(cl(N)))$) for every $N \in SO(Y)$,

(m) the inverse image of a θ -semi-closed set of Y is e^* -closed (resp. e-closed, a-closed),

(n) $f^{-1}(int(cl(N)))$ is e^{*}-closed (resp. e-closed, a-closed) for every open subset N of Y,

(o) $f^{-1}(cl(int(F)))$ is e^{*}-open (resp. e-open, a-open) for every closed subset F of Y,

(p) $f^{-1}(cl(U))$ is e^{*}-open (resp. e-open, a-open) in X for every $U \in \beta O(Y)$,

(r) $f^{-1}(cl(U))$ is e^{*}-open (resp. e-open, a-open) in X for every $U \in SO(Y)$,

(s) $f^{-1}(int(cl(U)))$ is e^* -closed (resp. e-closed, a-closed) in X for every $U \in PO(Y)$.

Proof. We prove only for (e^*, s) -continuity, the proofs for (e, s)-continuity and (a, s)-continuity being entirely analogous.

 $(a) \Leftrightarrow (b)$: Obvious.

 $(b) \Rightarrow (c)$: Let $U \subset X$. Let $y \notin \operatorname{r-ker}(f(U))$. There exists a regular closed set F containing y such that $f(U) \cap F = \emptyset$. We have $U \cap f^{-1}(F) = \emptyset$ and $e^*\operatorname{-cl}(U) \cap f^{-1}(F) = \emptyset$. Thus, $f(e^*\operatorname{-cl}(U)) \cap F = \emptyset$ and $y \notin f(e^*\operatorname{-cl}(U))$. Hence, $f(e^*\operatorname{-cl}(U)) \subset \operatorname{r-ker}(f(U))$.

 $(c) \Rightarrow (d)$: Let $N \subset Y$. By (c), $f(e^*-cl(f^{-1}(N))) \subset r-ker(N)$. Thus, $e^*-cl(f^{-1}(N)) \subset f^{-1}(r-ker(N))$.

 $(d) \Rightarrow (a)$: Let $N \in RO(Y)$. By Lemma 1, $e^*-cl(f^{-1}(N) \subset f^{-1}(r-ker(N)) = f^{-1}(N)$ and $e^*-cl((f^{-1}(N)) = f^{-1}(N)$. Hence, $f^{-1}(N)$ is e^* -closed in X.

 $(e) \Rightarrow (f)$: Let $P \subset X$ and $x \in e^* - cl(P)$ and $G \in SO(Y, f(x))$. By (e), there exists $U \in e^*O(X, x)$ such that $f(U) \subset cl(G)$. Since $x \in e^* - cl(P)$, $U \cap P \neq \emptyset$ and $\emptyset \neq f(U) \cap f(P) \subset cl(G) \cap f(P)$. Thus, $f(x) \in \theta$ -s-cl(f(P))and hence $f(e^* - cl(P)) \subset \theta$ -s-cl(f(P)).

 $(f) \Rightarrow (g) : \text{Let } R \subset Y.$ We have $f(e^* - cl(f^{-1}(R))) \subset \theta - s - cl(f(f^{-1}(R))) \subset \theta - s - cl(R)$ and $e^* - cl(f^{-1}(R)) \subset f^{-1}(\theta - s - cl(R)).$

 $(g) \Rightarrow (e)$: Let $N \in SO(Y, f(x))$. Since $cl(N) \cap (Y \setminus cl(N)) = \emptyset$, then $f(x) \notin \theta$ -s- $cl(Y \setminus cl(N))$ and $x \notin f^{-1}(\theta$ -s- $cl(Y \setminus cl(N)))$. By $(g), x \notin e^*$ - $cl(f^{-1}(Y \setminus cl(N)))$ and hence there exists $U \in e^*O(X, x)$ such that $U \cap f^{-1}(Y \setminus cl(N)) = \emptyset$ and $f(U) \cap (Y \setminus cl(N)) = \emptyset$. It follows that $f(U) \subset cl(N)$.

 $(g) \Rightarrow (h)$: Obvious.

 $(h) \Rightarrow (i)$: Since θ -s-cl(N) = s-cl(N) for an open set N, it is obvious.

 $(i) \Rightarrow (j)$: It follows from Lemma 4.

 $(j) \Rightarrow (a)$: Let $N \in RO(Y)$. By $(j), e^*-cl(f^{-1}(N)) \subset f^{-1}(int(cl(N))) = f^{-1}(N)$. Hence, $f^{-1}(N)$ is e^* -closed and hence f is (e^*, s) -continuous.

 $(b) \Rightarrow (k):$ Since any $\theta\text{-semi-open set}$ is a union of regular closed sets, it holds.

 $(k) \Rightarrow (e)$: Let $x \in X$ and $N \in SO(Y, f(x))$. Since cl(N) is θ -semi-open in Y, there exists an e^* -open set U such that $x \in U \subset f^{-1}(cl(N))$. Hence, $f(U) \subset cl(N)$.

 $(e) \Rightarrow (l)$: Let $N \in SO(Y)$ and $x \in f^{-1}(N)$. We have $f(x) \in N$ and there exists an e^* -open set U in X containing x such that $f(U) \subset cl(N)$. We have $x \in U \subset f^{-1}(cl(N))$ and hence $x \in e^*$ - $int(f^{-1}(cl(N)))$. Thus, $f^{-1}(N) \subset e^*$ - $int(f^{-1}(cl(N)))$.

 $(l) \Rightarrow (b)$: Let F be any regular closed set of Y. Since $F \in SO(Y)$, then $f^{-1}(F) \subset e^* \operatorname{-int}(f^{-1}(F))$. This shows that $f^{-1}(F)$ is e^* -open in X.

 $(k) \Leftrightarrow (m)$: It is obvious.

 $(a) \Leftrightarrow (n)$: Let N be an open subset of Y. Since int(cl(N)) is regular open, $f^{-1}(int(cl(N)))$ is e^{*}-closed. The converse is similar.

 $(b) \Leftrightarrow (o)$: It is obvious.

 $(b) \Rightarrow (p)$: Let $U \in \beta O(Y)$. By Theorem 2.4 [2], cl(U) is regular closed and hence $f^{-1}(cl(U)) \in e^*O(X)$.

 $(p) \Rightarrow (r)$: Since $SO(Y) \subset \beta O(Y)$, it is obvious.

 $(r) \Rightarrow (s)$: Let $U \in PO(Y)$. Since $Y \setminus int(cl(U))$ is regular closed and hence it is semiopen, we have $X \setminus f^{-1}(int(cl(U))) = f^{-1}(Y \setminus int(cl(U))) = f^{-1}(cl(Y \setminus int(cl(U)))) \in e^*O(X)$. Thus, $f^{-1}(int(cl(U)))$ is e^* -closed.

 $(s) \Rightarrow (a)$: Let $U \in RO(Y)$ Then $U \in PO(Y)$ and hence $f^{-1}(U) = f^{-1}(int(cl(U)))$ is e^* -closed in X.

Lemma 21 ([19]) The following properties hold for a subset P of a space X:

(1) α -cl(P) = cl(P) for every $P \in \beta O(X)$, (2) p-cl(P) = cl(P) for every $P \in SO(X)$.

Corollary 22 The following are equivalent for a function $f: X \to Y$:

(1) f is (e^*, s) -continuous (resp. (e, s)-continuous, (a, s)-continuous),

(2) $f^{-1}(\alpha - cl(N))$ is e^* -open (resp. e-open, a-open) in X for every $N \in \beta O(Y)$,

(3) $f^{-1}(p\text{-}cl(N))$ is e^{*}-open (resp. e-open, a-open) in X for every $N \in SO(Y)$,

(4) $f^{-1}(s\text{-}cl(N))$ is e^{*}-closed (resp. e-closed, a-closed) in X for every $N \in PO(Y)$,

Proof. It follows from Lemma 21, Lemma 4 and Theorem 20. ■

Definition 23 A subset P of a topological space X is said to be e^* -dense (resp. e-dense) in X if e^* -cl(P) = X (resp. e-cl(P) = X).

A space X is said to be s-Urysohn [3] if for each pair of distinct points x and y in X, there exist $M \in SO(X, x)$ and $N \in SO(X, y)$ such that $cl(M) \cap cl(N) = \emptyset$.

Lemma 24 ([7]) Let $f : X \to Y$ be a function. If f is almost contra-supercontinuous, then for each $x \in X$ and for each $V \in SO(Y, f(x))$, there exists a δ -open set U in X containing x such that $f(U) \subset cl(V)$.

Lemma 25 ([13]) Let X be a space and A, $B \subset X$. If $A \in \delta O(X)$ and $B \in e^*O(X)$ (resp. $B \in eO(X)$), then $A \cap B \in e^*O(X)$ (resp. $A \cap B \in eO(X)$).

Theorem 26 Let $f, g: X \to Y$ be functions. If f is (e^*, s) -continuous (resp. (e, s)-continuous) and g is almost contra-super-continuous and Y is s-Urysohn, then $P = \{x \in X : f(x) = g(x)\}$ is e^* -closed (resp. e-closed) in X.

Proof. Let $x \in X \setminus P$. We have $f(x) \neq g(x)$. Since Y is s-Urysohn, there exist $M \in SO(Y, f(x))$ and $N \in SO(Y, g(x))$ such that $cl(M) \cap cl(N) = \emptyset$. Since f is (e^*, s) -continuous and g is almost contra-super-continuous, there exist an e^* -open set K and a δ -open set L containing x such that $f(K) \subset cl(M)$ and $g(L) \subset cl(N)$. Thus, $K \cap L = S \in e^*O(X)$, $f(S) \cap g(S) = \emptyset$ and hence $x \notin e^*$ -cl(P). Hence, P is e^* -closed in X.

Theorem 27 Let X and Y be topological spaces. If Y is s-Urysohn, $f : X \to Y$ and $g : X \to Y$ are (e^*, s) -continuous (resp. (e, s)-continuous) and almost contra-super-continuous functions, respectively and f = g on e^* -dense (resp. e-dense) set $P \subset X$, then f = g on X.

Proof. Let f and g be (e^*, s) -continuous and almost contra-supercontinuous functions, respectively and Y be s-Urysohn. Then $R = \{x \in X : f(x) = g(x)\}$ is e^* -closed in X. Since $P \subset R$ and P is e^* -dense set in $X, X = e^*$ - $cl(P) \subset e^*$ -cl(R) = R. Thus, f = g on X.

Definition 28 Let X be a topological space and $P \subset X$. The e^{*}-frontier (resp. e-frontier, a-frontier) of P is given by e^* - $fr(P) = e^*$ - $cl(P) \cap e^*$ $cl(X \setminus P)$ (resp. e-fr(P) = e- $cl(P) \cap e$ - $cl(X \setminus P)$, a-fr(P) = a- $cl(P) \cap a$ $cl(X \setminus P)$).

Theorem 29 Let $f: X \to Y$ be a function. Then f is not (e^*, s) -continuous (resp. (e, s)-continuous, (a, s)-continuous) at x if and only if $x \in e^*$ - $fr(f^{-1}(F))$ (resp. $x \in e$ - $fr(f^{-1}(F))$, $x \in a$ - $fr(f^{-1}(F))$) for some $F \in RC(Y, f(x))$.

Proof. (\Rightarrow) : Suppose that f is not (e^*, s) -continuous at x. There exists $F \in RC(Y, f(x))$ such that $f(U) \nsubseteq F$ for every $U \in e^*O(X, x)$. For every $U \in e^*O(X, x)$, we have $f(U) \cap (Y \setminus F) \neq \emptyset$. Thus, $U \cap (X \setminus f^{-1}(F)) \neq \emptyset$ for every $U \in e^*O(X, x)$ and hence $x \in e^*-cl(X \setminus f^{-1}(F))$. Since $x \in f^{-1}(F)$, $x \in e^*-fr(f^{-1}(F))$.

(⇐): Let $x \in X$. Suppose that there exists $F \in RC(Y, f(x))$ such that $x \in e^*$ - $fr(f^{-1}(F))$ and that f is (e^*, s) -continuous at x. There exists an e^* -open set U such that $x \in U$ and $U \subset f^{-1}(F)$. Thus, $x \notin e^*$ - $cl(X \setminus f^{-1}(F))$. This is a contradiction. Hence, f is not (e^*, s) -continuous at x.

3 Further properties

Definition 30 A subset S of a space X is said to be e^* -compact (resp. ecompact, a-compact) relative to X if for every cover $\{P_i : i \in I\}$ of S by e^* -open (resp. e-open, a-open) sets of X, there exists a finite subset I_0 of I such that $S \subset \cup \{P_i : i \in I_0\}$. A space X said to be e^* -compact [13] (resp. ecompact [13], a-compact [13]) if every e^* -open (resp. e-open, a-open) cover of X has a finite subcover.

Theorem 31 Every e^* -closed (resp. e-closed, a-closed) subset P of an e^* -compact (resp. e-compact, a-compact) space X is e^* -compact (resp. e-compact, a-compact) relative to X.

Proof. Let $P \subset X$ be e^* -closed and X be an e^* -compact space. Let $\{M_i : i \in I\}$ be a cover of P by e^* -open subsets of X. This implies that $P \subset \bigcup_{i \in I} M_i$ and $(X \setminus P) \cup (\bigcup_{i \in I} M_i) = X$. Since X is e^* -compact, there exists a finite subset I_0 of I such that $(X \setminus P) \cup (\bigcup_{i \in I_0} M_i) = X$. Thus $P \subset \bigcup_{i \in I_0} M_i$ and hence P is e^* -compact relative to X.

A space X said to be S-closed [25] if every regular closed cover of X has a finite subcover.

Theorem 32 The surjective (e^*, s) -continuous (resp. (e, s)-continuous, (a, s)-continuous) image of an e^* -compact (resp. e-compact, a-compact) space is S-closed.

Proof. Let X be an e^* -compact space and $f: X \to Y$ be a surjective (e^*, s) -continuous function. Let $\{M_i : i \in I\}$ be a cover of Y by regular closed sets. Since f is (e^*, s) -continuous, then $\{f^{-1}(M_i) : i \in I\}$ is a cover of X by e^* -open sets. Since X is e^* -compact, there exists a finite subset I_0 of I such that $X = \bigcup_{i \in I_0} f^{-1}(M_i)$. Since f is surjective, $Y = \bigcup_{i \in I_0} M_i$. Thus, Y is S-closed.

Theorem 33 If $f: X \to Y$ is e^* -irresolute (resp. e-irresolute, a-irresolute) and $P \subset X$ is e^* -compact (resp. e-compact, a-compact) relative to X, then its image f(P) is e^* -compact (resp. e-compact, a-compact) relative to Y.

Proof. It is similar to that of Theorem 32. ■

Definition 34 A space X is said to be e^* - T_1 (resp. e- T_1 , a- T_1) if for each pair of distinct points in X, there exist e^* -open (resp. e-open, a-open) sets M and N containing x and y, respectively, such that $y \notin M$ and $x \notin N$.

A space X is said to be weakly Hausdorff [23] if each element of X is an intersection of regular closed sets.

Theorem 35 Let $f : X \to Y$ be a function. If f is a (e^*, s) -continuous (resp. (e, s)-continuous, (a, s)-continuous) injection and Y is weakly Hausdorff, then X is e^* - T_1 (resp. e- T_1 , a- T_1).

Proof. For $x \neq y$ in X, there exist $P, R \in RC(Y)$ such that $f(x) \in P$, $f(y) \notin P, f(x) \notin R$ and $f(y) \in R$. Since f is (e^*, s) -continuous, $f^{-1}(P)$ and $f^{-1}(R)$ are e^* -open subsets of X such that $x \in f^{-1}(P), y \notin f^{-1}(P), x \notin f^{-1}(R)$ and $y \in f^{-1}(R)$. Thus, X is e^* -T₁.

Definition 36 A space X is said to be e^* - T_2 [13] (resp. e- T_2 [13], a- T_2 [13]) if for each pair of distinct points x and y in X, there exist $M \in e^*O(X, x)$ (resp. $M \in eO(X, x), M \in aO(X, x)$) and $N \in e^*O(X, y)$ (resp. $N \in eO(X, y), N \in aO(X, y)$) such that $M \cap N = \emptyset$.

Theorem 37 Let $f : X \to Y$ be a function. If f is a (e^*, s) -continuous (resp. (e, s)-continuous, (a, s)-continuous) injection and Y is s-Urysohn, then X is e^* - T_2 (resp. e- T_2 , a- T_2).

Proof. Let Y be s-Urysohn. For any distinct points x and y in X, $f(x) \neq f(y)$. Since Y is s-Urysohn, there exist $P \in SO(Y, f(x))$ and $R \in SO(Y, f(y))$ such that $cl(P) \cap cl(R) = \emptyset$. Since f is a (e^*, s) -continuous, there exist e^* -open sets A and B in X containing x and y, respectively, such that $f(A) \subset cl(P)$ and $f(B) \subset cl(R)$ such that $A \cap B = \emptyset$. Thus, X is e^*-T_2 .

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983) 77-90.
- [2] D.Andrijevic, Semipreopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [3] S. P. Arya and M. P. Bhamini, Some generalizations of pairwise Urysohn spaces, Indian J. Pure Appl. Math. 18 (1987) 1088-1093.
- [4] N. Bourbaki, General topology, Part I, Addison Wesley, Reading, Mass 1996.
- [5] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971) 99-112.
- [6] E. Ekici, On contra R-continuity and a weak form, Indian J. Math., 46 (2-3) (2004), 267-281.
- [7] E. Ekici, Almost contra-super-continuous functions, Studii si Cercetari Stiintifice, Seria: Matematica, Univ. din Bacau, 14 (2004), 31-42.
- [8] E. Ekici, $(\delta$ -pre,s)-continuous functions, Bull. Malaysian Math. Sci. Soc., 27 (2) (2004), 237-251.

- [9] E. Ekici, Another form of contra-continuity, Kochi Journal of Mathematics, 1 (2006), 21-29.
- [10] E. Ekici, On *e*-open sets, \mathcal{DP}^* -sets and \mathcal{DPE}^* -sets and decompositions of continuity (submitted).
- [11] E. Ekici, On e^* -open sets and $(\mathcal{D}, \mathcal{S})^*$ -sets and decompositions of continuous functions (submitted).
- [12] E. Ekici, On *a*-open sets, \mathcal{A}^* -sets and decompositions of continuity and super-continuity (submitted).
- [13] E. Ekici, Some weak forms of δ -continuity and e^* -first-countable spaces (submitted).
- [14] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341-348.
- [15] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36-41.
- [16] G.Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18 (1987), 226-233.
- [17] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [18] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [19] T. Noiri, On almost continuous functions, Indian J. Pure Appl. Math., 20 (1989), 571–576.
- [20] M. C. Pal and P. Bhattacharyya, Faint precontinuous functions, Soochow J. Math., 21 (1995), 273–289.
- [21] J. H. Park, B. Y. Lee and M. J. Son, On δ -semiopen sets in topological space, J. Indian Acad. Math., 19 (1) (1997), 59-67.
- [22] S. Raychaudhuri and M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357-366.

- [23] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces, in: General Topology and its relation to Modern Analysis and Algebra. III, Proc. Conf. Kanpur, 1968, Academia, Prague 1971, pp. 301-306.
- [24] M. H. Stone, Applications of the theory of Boolean rings to general topology, TAMS 41 (1937) 375-381.
- [25] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60 (1976) 335-338.
- [26] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968) 103-118.

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey *E-mail*: eekici@comu.edu.tr