A GENERALISED COMMUTATIVITY THEOREM FOR PK-QUASIHYPONORMAL OPERATORS

B. P. Duggal

Abstract

For Hilbert space operators A and B, let δ_{AB} denote the generalised derivation $\delta_{AB}(X) = AX - XB$ and let \triangle_{AB} denote the elementary operator $\triangle_{AB}(X) = AXB - X$. If A is a pk-quasihyponormal operator, $A \in pk - QH$, and B^* is an either p-hyponormal or injective dominant or injective pk - QH operator (resp., B^* is an either p-hyponormal or dominant or pk - QH operator), then $\delta_{AB}(X) = 0 \Longrightarrow \delta_{A^*B^*}(X) = 0$ (resp., $\Delta_{AB}(X) = 0 \Longrightarrow \Delta_{A^*B^*}(X) = 0$).

1 Introduction

Let $B(\mathcal{H}, \mathcal{K})$, $B(\mathcal{H}) = B(\mathcal{H}, \mathcal{H})$, denote the algebra of operators (equivalently, bounded linear transformations) from a Hilbert space \mathcal{H} into a Hilbert space \mathcal{K} . Let $\delta_{AB} \in B(B(\mathcal{K}), B(\mathcal{H}))$, $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$, denote the generalised derivation $\delta_{AB}(X) = AX - XB$, and let $\Delta_{AB} \in B(B(\mathcal{K}), B(\mathcal{H}))$ denote the elementary operator $\Delta_{AB}(X) = AXB - X$. The (classical) Putnam-Fuglede commutativity theorem says that if A and B are normal operators, then $\delta_{AB}^{-1}(0) \subseteq \delta_{A^*B^*}^{-1}(0)$. Over the years, the Putnam-Fuglede commutativity theorem has been extended to various classes of operators, each more general than the class of normal operators, and to the elementary operator Δ_{AB} to prove that $\Delta_{AB}^{-1}(0) \subseteq \Delta_{A^*B^*}^{-1}(0)$ for many of these classes of operators (see [1, 2, 3, 7] and [9] for references). Recall that an operator $A \in B(\mathcal{H})$ is said to be (p, k)-quasihyponormal, $A \in pk - QH$, for some real number 0 and non-negative integer <math>k (momentarily, we allow k = 0) if $A^{*k}(|A|^{2p} - |A^*|^{2p})A^k \ge 0$. Evidently, a 10 - QH operator is hyponormal,

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B20. Secondary 47B40, 47B47. Key words and phrases. Hilbert space, pk-quasihyponormal operator, generalised derivation δ_{AB} , elementary operator Δ_{AB} , Putnam-Fuglede theorem, numerical range. Received: March 8, 2007

78 B. P. Duggal

a p0-QH operator is p-hyponormal, a 11-QH operator is quasihyponormal and a 1k-QH operator for $k\geq 1$ is k-quasihyponormal. Recently, Kim [9, Theorem 11] has proved that if $A\in B(\mathcal{H})$ is an injective pk-QH operator, $k\geq 1$, and $B^*\in B(\mathcal{K})$ is a p-hyponormal operator, then $\delta_{AB}^{-1}(0)\subseteq \delta_{A^*B^*}^{-1}(0)$. Using what is essentially a very simple argument, we prove in this note a more general result which not only leads to Kim's result (loc.cit.) but also gives us further similar results. Thus we prove that if $A\in pk-QH$ and B^* is either p-hyponormal or injective dominant or injective pk-QH, then $\delta_{AB}^{-1}(0)\subseteq \delta_{A^*B^*}^{-1}(0)$, and if $A\in pk-QH$ and B^* is either p-hyponormal or dominant or pk-QH, then $\Delta_{AB}^{-1}(0)\subseteq \Delta_{A^*B^*}^{-1}(0)$. We also consider operators $A\in pk-QH$ for which $\delta_{A^*A}(X)=0$ or $\Delta_{AA^*}(X)=0$ for some invertible operator X.

In the following we shall denote the closure of a set S by \overline{S} , the range of $T \in B(\mathcal{H})$ by $T\mathcal{H}$ or by $\operatorname{ran} T$, the orthogonal complement of $T^{-1}(0)$ by $\ker^{\perp} T$, the spectrum of T by $\sigma(T)$, the point spectrum of T by $\sigma_p(T)$, and the class of p-hyponormal operators, 0 , by <math>p - H. Recall that an operator T is a quasiaffinity if it is injective and has dense range. Any other notation or terminology will be defined at the first instance of its occurrence.

2 Results

Let \mathcal{P}_1 denote the class of operators $A \in B(\mathcal{H})$ such that

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array}\right) \left(\begin{array}{c} \mathcal{H}_1 \\ \mathcal{H}_2 \end{array}\right),$$

where $A_{22}^k = 0$ for some integer $k \geq 1$, and let \mathcal{P}_2 denote the class of operators $B \in B(\mathcal{K})$ such that B has the decomposition $B = B_n \oplus B_p$ into its normal and pure (= completely non-normal) parts, with respect to some decomposition $\mathcal{K} = \mathcal{K}_1 \oplus \mathcal{K}_2$, such that B_p has dense range. Let $(\mathcal{P}_1, \mathcal{P}_2)$ (resp., $[\mathcal{P}_1, \mathcal{P}_2]$) denote the class of operators (A, B), $A \in \mathcal{P}_1$ and $B \in \mathcal{P}_2$, such that $\delta_{A_{11}B_p}^{-1}(0) \subseteq \delta_{A_{11}^*B_p}^{-1}(0)$ and $\delta_{A_{11}B_n}^{-1}(0) \subseteq \delta_{A_{11}^*B_n}^{-1}(0)$ (resp., $\Delta_{A_{11}B_n}^{-1}(0) \subseteq \Delta_{A_{11}^*B_n}^{-1}(0)$.) The following theorem is our main result.

Theorem 2.1. (i) If $(A, B) \in (\mathcal{P}_1, \mathcal{P}_2)$ and $X \in B(\mathcal{K}, \mathcal{H})$ is a quasiaffinity, then $X \in \delta_{AB}^{-1}(0) \Longrightarrow X \in \delta_{A^*B^*}^{-1}(0)$.

(ii) If $(A,B) \in [\mathcal{P}_1,\mathcal{P}_2]$ and $X \in B(\mathcal{K},\mathcal{H})$ is a quasiaffinity, then $X \in \Delta_{AB}^{-1}(0) \Longrightarrow X \in \Delta_{A^*B^*}^{-1}(0)$.

Proof. Let the quasiaffinity $X: \mathcal{K}_1 \oplus \mathcal{K}_2 \longrightarrow \mathcal{H}_1 \oplus \mathcal{H}_2$ have the matrix representation $X = [X_{ij}]_{i,j=1}^2$.

(i) If $X \in \delta_{AB}^{-1}(0)$, then $\delta_{A_{22}B_p}(X_{22}) = 0 \Longrightarrow X_{22}B_p^k = 0 \Longrightarrow X_{22} = 0$, since B_p has dense range. Evidently, the hypothesis $\delta_{A_{11}B_p}^{-1}(0) \subseteq \delta_{A_{11}^*B_p^*}^{-1}(0) \Longrightarrow \delta_{A_{11}B_p}(X_{12}) = 0 = \delta_{A_{11}^*B_p^*}(X_{12}) \Longrightarrow \overline{\operatorname{ran} X_{12}}$ reduces A_{11} , $\ker^{\perp} X_{12}$ reduces A_{11} , $\ker^{\perp} X_{12}$ and $A_{11}|_{\overline{\operatorname{ran} X_{12}}}$ and $A_{11}|_{\overline{\operatorname{ran} X_{12}}}$ and $A_{11}|_{\overline{\operatorname{ran} X_{12}}}$ are unitarily equivalent normal operators. Hence $X_{12} = 0$, which since X is a quasiaffinity implies that $K_2 = \mathcal{H}_2 = \{0\}$. Consequently, the hypothesis $\delta_{A_{11}B_n}^{-1}(0) \subseteq \delta_{A_{11}^*B_n^*}^{-1}(0)$ implies that $\delta_{A^*B^*}(X) = 0$.

(ii) If $\triangle_{AB}(X) = 0$, then

$$\triangle_{A_{22}B_n}(X_{21}) = 0 \Longrightarrow X_{21} = A_{22}X_{21}B_n = A_{22}^kX_{21}B_n^k = 0,$$

and

$$\triangle_{A_{22}B_p}(X_{22}) = 0 \Longrightarrow X_{22} = A_{22}X_{22}B_p = A_{22}^k X_{22}B_p^k = 0.$$

Since X is a quasiaffinity, $\mathcal{K}_2 = \mathcal{H}_2 = \{0\}$. Consequently, the hypothesis $\triangle_{A_{11}B_n}^{-1}(0) \subseteq \triangle_{A_{11}^*B_n}^{-1}(0)$ implies that $\triangle_{A^*B^*}(X) = 0$. \square

The numerical range W(T) of an operator $T \in B(\mathcal{H})$ is the set $\{\langle Tx, x \rangle : ||x|| = 1\}$. Recall from Embry [6] that if A and $B \in B(\mathcal{H})$ are commuting normal operators, and if $X \in B(\mathcal{H})$ is such that $0 \notin \overline{W(X)}$ and $\delta_{AB}(X) = 0$, then A = B. Thus, if A is a normal operator such that $\delta_{A^*A}(X) = 0$ for some operator X such that $0 \notin \overline{W(X)}$, then A is self-adjoint. That a similar result holds for operators $A \in p - H$ is proved in [9, Theorem 2]. In the following we prove an analogue of Embry's result for operators $A \in \mathcal{P}_1$ such that $\delta_{A^*A}(X) = 0$ or $\Delta_{A^*A}(X) = 0$. Let $\partial \mathbf{D}$ denote the boundary of the unit disc.

Theorem 2.2. Let $A \in \mathcal{P}_1$ have the decomposition $A = A_n \oplus A_p$ into its normal and pure parts (alongwith the matrix decomposition above). Let $X \in B(\mathcal{H})$ be invertible.

(i) If $0 \notin \overline{W(X)}$, $\delta_{A^*A}(X) = 0$ and $\delta_{A_{11}^*A_p}^{-1}(0) \subseteq \delta_{A_{11}A_p^*}^{-1}(0)$, then A is the direct sum of a self-adjoint operator and a nilpotent operator (where either component may act on the trivial space.)

component may act on the trivial space.)
(ii) If
$$\triangle_{A^*A}(X) = 0$$
 and $\triangle_{A_{1_1}^*A_p}^{-1}(0) \subseteq \triangle_{A_{1_1}A_p}^{-1}(0)$, then A is unitary.

Proof. (i) If we let A^* have the matrix representation above, $A = A_n \oplus A_p$ and $X = [X_{ij}]_{i,j=1}^2$, then $\delta_{A_{11}^*A_p}(X_{12}) = 0$. Hence, since $\delta_{A_{11}^*A_p}^{-1}(0) \subseteq \delta_{A_{11}^*A_p}^{-1}(0)$, $\ker^{\perp}(X_{12})$ reduces A_p , and $A_{11}^*|_{\overline{\operatorname{ran}(X_{12})}}$ and $A_p|_{\ker^{\perp}X_{12}}$ are unitarily equivalent normal operators [3, Lemma 1(i)]. Since A_p is pure, we must

80 B. P. Duggal

have that $X_{12} = 0$. Consequently, X_{22} is injective. Since $X_{22} \in \delta_{A_{22}^* A_p}^{-1}(0)$ and $A_{22}^*{}^k = 0$, $X_{22}A_p^k = 0 \Longrightarrow A_p$ is k-nilpotent. To complete the proof we observe now that if $A^* = XAX^{-1}$ and $0 \notin \overline{W(X)}$, then $\sigma(A)$ is real [9, Lemma 3]. Since $\sigma(A) = \sigma(A_n) \cup \sigma(A_p)$ and A_n is normal, A_n is self-adjoint.

(ii) Representing A^* , A and X as in (i) above, it is seen that

$$\triangle_{A_{11}*A_p}(X_{12}) = 0 = \triangle_{A_{11}A_p^*}(X_{12}),$$

and hence that $\ker^{\perp}(X_{12})$ reduces A_p and $A_p|\ker^{\perp}(X_{12})$ is normal [3, Lemma 1(ii)]. Since A_p is pure, $X_{12}=0$ and $X_{22}\in \triangle_{A_{22}^*A_p}^{-1}(0)$. Since A_{22} is k-nilpotent, $X_{22}=0\Longrightarrow X=X_{11}$ and $A=A_n$ is normal. Hence $A^*XA=X=AXA^*$ [3, Corollary3] $\Longrightarrow |X|^2A=(AX^*A^*)XA=(AX^*)A^*XA=A|X|^2\Longrightarrow |X|A=A|X|$. Letting X have the polar decomposition X=U|X|, it follows that $A^*UA=U\Longrightarrow A$ is invertible and A^{-1} is unitarily equivalent to A^* . Hence $\sigma(A)\subseteq\partial \mathbf{D}$. Since A is normal, A is unitary. \square

Remark 2.3. (i) Theorem 2.2(i) has a more satisfactory form for pk - QH operators. Thus, if an operator $A \in pk - QH$ is such that $\delta_{A^*A}(X) = 0$ for some invertible operator X such that $0 \notin \overline{W(X)}$, then $\sigma(A)$ is real. Hence A_n in the decomposition $A = A_n \oplus A_p$ being normal is self-adjoint. Since a pk - QH operator with zero Lebsgue area measure is the direct sum of a normal operator with a nilpotent operator [8, Corollary 6], A_p is nilpotent and A is the direct sum of a self-adjoint operator with a nilpotent operator. Hence: If $A \in pk - QH$, $0 \notin \overline{W(X)}$ and $\delta_{A^*A}(X) = 0$, then A is the direct sum of a self-adjoint operator with a nilpotent operator (cf. [9, Theorem 5]). Observe that if the operator A of Theorem 2.2(i) is reduction normaloid (i.e., the restriction of A to reducing subspaces of A is normaloid), then A is self-adjoint. Although pk - QH operators are not normaloid, p - H operators are (reduction normaloid). Hence, if $A \in p - H$, $0 \notin \overline{W(X)}$ and $\delta_{A^*A}(X) = 0$, then A is a self-adjoint operator [9, Theorem 2]. (ii) Let $A \in pk - QH$ and assume that $\Delta_{A^*A}(X) = 0$ for some invertible operator X. Then A is left invertible. Hence, if A has a dense range (eviginal parameter X. Then A is left invertible. Hence, if A has a dense range (eviginal parameter X. Then A is left invertible.

(ii) Let $A \in pk - QH$ and assume that $\triangle_{A^*A}(X) = 0$ for some invertible operator X. Then A is left invertible. Hence, if A has a dense range (evidently, see definition, such a pk - QH operator is a p - H operator), then A is invertible, and so $\sigma(A) \subseteq \partial \mathbf{D}$. Since a p - H operator with spectrum in $\partial \mathbf{D}$ is unitary, A is unitary.

Applications. The restriction of a pk - QH operator to an invariant subspace is again a pk - QH operator. We assume in the following that $0 and <math>k \ge 1$. Recall that every $A \in pk - QH \cap B(\mathcal{H})$ has a

representation

$$A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} \overline{T^k \mathcal{H}} \\ T^{*k^{-1}}(0) \end{pmatrix},$$

where $A_{11} \in p-H$ and $A_{22}^k = 0$ [8]. Evidently $\delta_{A_{11}N}^{-1}(0) \subseteq \delta_{A_{11}^*N^*}^{-1}(0)$ for every normal operator N and $\delta_{A_{11}T}^{-1}(0) = \{0\}$ for all pure p-hyponormal or dominant operators T^* [2, Theorem 7 and Corollary 8]. If S is a hyponormal operator and T^* is a dominant operator, then $\Delta_{ST}^{-1}(0) \subseteq \Delta_{S^*T^*}^{-1}(0)$: this is a consequence of the fact that $\delta_{ST}^{-1}(0) \subseteq \delta_{S^*T^*}^{-1}(0)$ (see [1, Theorem 1] and [3, Theorem 2]). Since to every p-hyponormal operator R there corresponds a hyponormal operator S and a quasiaffinity S such that S is a hyponormal operator S and a quasiaffinity S such that S is a hyponormal operator S and a quasiaffinity S such that S is a hyponormal operator S and a quasiaffinity S such that S is a hyponormal operator S and a quasiaffinity S such that S is a hyponormal operator S and a quasiaffinity S such that S is a hyponormal operator S and a quasiaffinity S such that S is a hyponormal operator S and a quasiaffinity S such that S is a hyponormal operator S and a quasiaffinity S is a hyponormal operator S and a quasiaffinity S is a hyponormal operator S and a quasiaffinity S is a hyponormal operator S and a quasiaffinity S is a hyponormal operator S is a

Theorem 2.4. Let $A \in pk - QH \cap B(\mathcal{H})$ and $B \in B(\mathcal{K})$. If B^* is an either p-hyponormal or injective dominant or injective pk - QH operator (resp., B^* is an either p-hyponormal or dominant or pk - QH operator), then $\delta_{AB}^{-1}(0) \subseteq \delta_{A^*B^*}^{-1}(0)$ (resp., $\Delta_{AB}^{-1}(0) \subseteq \Delta_{A^*B^*}^{-1}(0)$).

Proof. Let d_{AB} stand for either of δ_{AB} and \triangle_{AB} . For a $Y \in d_{AB}^{-1}(0)$, define the quasiaffinity X: $\ker^{\perp}Y \longrightarrow \overline{\operatorname{ran}Y}$ by setting Xx = Yx for each $x \in \mathcal{K}$. Evidently, $\overline{\operatorname{ran}Y}$ is invariant for A and $\ker^{\perp}Y$ is invariant for B^* , and $d_{A_1B_1}(X) = 0$, where $A_1 = A|_{\overline{\operatorname{ran}Y}} \in pk - QH$ and $B_1^* = B^*|_{\ker^{\perp}Y}$ is either p-hyponormal or injective dominant or an injective pk - QH operator. In view of our remarks above, it follows from Theorem 2.1 that B_1 is normal and $d_{A_1^*B_1^*}(X) = 0$. Observe that $d_{A_1B_1}(X) = 0 = d_{A_1^*B_1^*}(X)$, B_1 normal, implies that A_1 is normal. It is not difficult to verify that invariant subspaces M of a pk - QH operator A such that $A|_M$ is injective normal are reducing [9, 1] Lemma [9, 1] hence $A = A_1 \oplus A_0$ for some operator A_0 . But then $d_{A_1^*B_1^*}(X) = 0 \Longrightarrow d_{A^*B^*}(X) = 0$. \square

Remark 2.5. (i). The hypothesis that B^* is an injective dominant or an injective pk-QH operator can not be relaxed in Theorem 2.4. Thus, let $A=B=N\oplus K$, where N is normal and K is k-nilpotent. Then A and $B^*\in pk-QH$. Let X_1 be any operator in the commutant of N, and let $X=X_1\oplus K^{k-1}$. Then $\delta_{AB}(X)=0$, but $\delta_{A^*B^*}(X)\neq 0$. Again, let $A=N\oplus K$, $X=0\oplus K^{k-1}$ and $B^*=D\oplus 0$ for some dominant operator D. Then $\delta_{AB}(X)=0$, but $\delta_{A^*B^*}(X)\neq 0$.

(ii). If $A \in pk - QH$ is such that $A|_{\overline{\operatorname{ran}}A^k}$ is normal, then $\overline{\operatorname{ran}}A^k$ reduces A. To see this, let $A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} \overline{\operatorname{ran}}A^k \\ \ker A^{*k} \end{pmatrix}$, where A_{11} is normal.

82 B. P. Duggal

Let $A_{11} = N \oplus 0$, where N is injective normal. Then [9, Lemma 10] implies

that
$$A = \begin{pmatrix} N & 0 & 0 \\ 0 & 0 & A_2 \\ 0 & 0 & A_{22} \end{pmatrix} = N \oplus \begin{pmatrix} 0 & A_2 \\ 0 & A_{22} \end{pmatrix} = N \oplus A_0$$
. The operator A_0

is (of necessity) pk-quasihyponormal. It is easily verified that A_0 is k+1-nilpotent. Hence $\sigma(A_0)=\{0\}$. Applying [8, Corollary 6], it follows that A_0 is the direct sum of a normal with a nilpotent. Evidently, $A_2=0$.

Various combinations (such as $A \in pk - QH$ is injective and $B^* \in p - H$ (see [9, Theorem 11]) and variants (such as $A \in pk - QH$ and $B^* \in pk - QH$ such that $B^{*-1}(0)$ is reducing (\Longrightarrow the pure part B_p^* of B^* is injective)) are possible in Theorem 2.4: we leave the formulation of such combinations to the reader. A version of Theorem 2.4 holds for pk - QH operators A and spectral operators B. (See [5, Chapter XV] for information on spectral and scalar operators.)

Theorem 2.6. If $\delta_{AB}(X) = 0$ (resp., $\Delta_{AB}(X) = 0$) for some operator $A \in pk - QH$, spectral operator $B \in B(\mathcal{K})$ such that $\overline{BK} = \overline{B^kK}$ and quasi-affinity X (resp., some operator $A \in pk - QH$ such that $0 \in \sigma(A) \Longrightarrow 0 \in \sigma_p(A)$, spectral operator B and quasiaffinity X), then A is normal, B is a scalar operator similar to A and $\delta_{A^*B^*}(X) = 0$ (resp., A is an invertible normal operator, B is a scalar operator similar to A and $\Delta_{A^*B^*}(X) = 0$).

Proof. Case $\delta_{AB}(X) = 0$. The hypothesis $\overline{BK} = \overline{B^kK}$ implies that $B \in B(\overline{BK} \oplus B^{*-1}(0))$ has a representation $B = B_{11} \oplus 0$, where B_{11} is spectral, and $X \in B(\overline{BK} \oplus B^{*-1}(0), \overline{A^kH} \oplus A^{*k^{-1}}(0))$ has a representation $X = \begin{pmatrix} X_{11} & X_{12} \\ 0 & X_{22} \end{pmatrix}$. Since $\overline{\operatorname{ran}}A^k\overline{\operatorname{ran}}X = \overline{\operatorname{ran}}X\overline{\operatorname{ran}}B^k = \overline{\operatorname{ran}}X\overline{\operatorname{ran}}B$, X_{11} is a quasiaffinity. Hence $\delta_{A_{11}B_{11}}(X_{11}) = 0 \Longrightarrow A_{11}$ is normal, B_{11} is a scalar operator similar to A_{11} , and $\delta_{A_{11}^*B_{11}^*}(X_{11}) = 0$ [7, Theorem 11]. Since X_{22} has dense range, $\delta_{AB}(X) = 0 \Longrightarrow A_{22}X_{22} = 0 \Longrightarrow A_{22} = 0$. Evidently, $A_{12} = 0$. (Observe that A_{11} is normal $\Longrightarrow \overline{\operatorname{ran}}A^k$ reduces A; see Remark 2.5(ii).) Hence, $\delta_{A^*B^*}(X) = 0$, A is normal and B is a scalar operator similar to A.

Case $\triangle_{AB}(X) = 0$. Since X is a quasiaffinity, and since $0 \notin \sigma_p(A) \Longrightarrow 0 \notin \sigma(A)$, the hypothesis $\triangle_{AB}(X) = 0$ implies that A is an invertible p-hyponormal operator such that $\delta_{A^{-1}B}(X) = 0$. Applying [7, Theorem 11], it follows that A^{-1} is normal, B is a scalar operator similar to A^{-1} and $\delta_{A^{*-1}B^*}(X) = 0 = \triangle_{A^*B^*}(X)$. \square

Acknowledgements. Part of this work was done whilst the author was visiting ISI New-Delhi (India). The author thanks Prof. Rajendra Bhatia, and ISI, for their kind hospitality.

References

- B. P. Duggal, On dominant operators, Arch. Math. (Basel) 46(1986), 353-359.
- [2] B. P. Duggal, Quasisimilar p-hyponormal operators, Integr. Eq. Oper. Th. 26(1996), 338-345.
- [3] B. P. Duggal, A remark on generalised Putnam-Fuglede theorems, Proc. Amer. Math. Soc. 129(2000), 83-87.
- [4] B. P. Duggal and I. H. Jeon, Remarks on spectral properties of phyponormal and log-hyponormal operators, Bull. Korean Math. Soc. 42(2005), 543-554.
- [5] Nelson Dunford and Jacob T. Schwartz, *Linear Operators*, *Part III*, *Spectral Operators*, Wiley Interscience, Wiley Classics, 1988.
- [6] M. R. Embry, Similarities involving normal operators on Hilbert spaces, Pacif. J. Math. 35(1970), 333-336.
- [7] I. H. Jeon and B. P. Duggal, p-hyponormal operators and quasisimilarity, Integr. Eq. Op. Th. **49**(2004), 397-403
- [8] In Hyoun Kim, On(p,k)-quasihyponormal operators, Math. Inequal. Appl. **7**(2004), 629-638.
- [9] In Hyoun Kim, The Fuglede-Putnam theorem for (p, k)-quashyponormal operators, J. Inequal. Appl. Volume (2006), 397-403.

8 Redwood Grove, Northfield Avenue, London W5 4SZ United Kingdom *E-mail*: bpduggal@yahoo.co.uk