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A GENERALISED COMMUTATIVITY THEOREM
FOR PK-QUASIHYPONORMAL OPERATORS

B. P. Duggal

Abstract

For Hilbert space operators A and B, let δAB denote the generalised
derivation δAB(X) = AX − XB and let 4AB denote the elementary
operator4AB(X) = AXB−X. If A is a pk-quasihyponormal operator,
A ∈ pk−QH, and B∗ is an either p-hyponormal or injective dominant
or injective pk−QH operator (resp., B∗ is an either p-hyponormal or
dominant or pk −QH operator), then δAB(X) = 0 =⇒ δA∗B∗(X) = 0
(resp., 4AB(X) = 0 =⇒4A∗B∗(X) = 0).

1 Introduction

Let B(H,K), B(H) = B(H,H), denote the algebra of operators (equiva-
lently, bounded linear transformations) from a Hilbert spaceH into a Hilbert
space K. Let δAB ∈ B(B(K), B(H)), A ∈ B(H) and B ∈ B(K), denote the
generalised derivation δAB(X) = AX−XB, and let 4AB ∈ B(B(K), B(H))
denote the elementary operator 4AB(X) = AXB − X. The (classical)
Putnam-Fuglede commutativity theorem says that if A and B are normal
operators, then δ−1

AB(0) ⊆ δ−1
A∗B∗(0). Over the years, the Putnam-Fuglede

commutativity theorem has been extended to various classes of operators,
each more general than the class of normal operators, and to the elementary
operator 4AB to prove that 4−1

AB(0) ⊆ 4−1
A∗B∗(0) for many of these classes

of operators (see [1, 2, 3, 7] and [9] for references). Recall that an operator
A ∈ B(H) is said to be (p, k)-quasihyponormal, A ∈ pk−QH, for some real
number 0 < p ≤ 1 and non-negative integer k (momentarily, we allow k = 0)
if A∗k(|A|2p− |A∗|2p)Ak ≥ 0. Evidently, a 10−QH operator is hyponormal,

2000 Mathematics Subject Classification. Primary 47B20. Secondary 47B40, 47B47.
Key words and phrases. Hilbert space, pk-quasihyponormal operator, generalised

derivation δAB , elementary operator 4AB , Putnam-Fuglede theorem, numerical range.
Received: March 8, 2007



78 B. P. Duggal

a p0−QH operator is p-hyponormal, a 11−QH operator is quasihyponormal
and a 1k −QH operator for k ≥ 1 is k-quasihyponormal. Recently, Kim [9,
Theorem 11] has proved that if A ∈ B(H) is an injective pk−QH operator,
k ≥ 1, and B∗ ∈ B(K) is a p-hyponormal operator, then δ−1

AB(0) ⊆ δ−1
A∗B∗(0).

Using what is essentially a very simple argument, we prove in this note a
more general result which not only leads to Kim’s result (loc.cit.) but also
gives us further similar results. Thus we prove that if A ∈ pk − QH and
B∗ is either p-hyponormal or injective dominant or injective pk−QH, then
δ−1
AB(0) ⊆ δ−1

A∗B∗(0), and if A ∈ pk − QH and B∗ is either p-hyponormal
or dominant or pk − QH, then 4−1

AB(0) ⊆ 4−1
A∗B∗(0). We also consider op-

erators A ∈ pk − QH for which δA∗A(X) = 0 or 4AA∗(X) = 0 for some
invertible operator X.

In the following we shall denote the closure of a set S by S, the range
of T ∈ B(H) by TH or by ranT , the orthogonal complement of T−1(0) by
ker⊥T , the spectrum of T by σ(T ), the point spectrum of T by σp(T ), and
the class of p-hyponormal operators, 0 < p < 1, by p −H. Recall that an
operator T is a quasiaffinity if it is injective and has dense range. Any other
notation or terminology will be defined at the first instance of its occurrence.

2 Results

Let P1 denote the class of operators A ∈ B(H) such that

A =
(

A11 A12

0 A22

)( H1

H2

)
,

where Ak
22 = 0 for some integer k ≥ 1, and let P2 denote the class of

operators B ∈ B(K) such that B has the decomposition B = Bn ⊕ Bp

into its normal and pure (= completely non-normal) parts, with respect
to some decomposition K = K1 ⊕ K2, such that Bp has dense range. Let
(P1,P2) (resp., [P1,P2]) denote the class of operators (A,B), A ∈ P1 and
B ∈ P2, such that δ−1

A11Bp
(0) ⊆ δ−1

A∗11B∗p
(0) and δ−1

A11Bn
(0) ⊆ δ−1

A∗11B∗n
(0) (resp.,

4−1
A11Bn

(0) ⊆ 4−1
A∗11B∗n

(0).) The following theorem is our main result.

Theorem 2.1. (i) If (A,B) ∈ (P1,P2) and X ∈ B(K,H) is a quasiaffinity,
then X ∈ δ−1

AB(0) =⇒ X ∈ δ−1
A∗B∗(0).

(ii) If (A,B) ∈ [P1,P2] and X ∈ B(K,H) is a quasiaffinity, then X ∈
4−1

AB(0) =⇒ X ∈ 4−1
A∗B∗(0).
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Proof. Let the quasiaffinity X : K1 ⊕ K2 −→ H1 ⊕ H2 have the matrix
representation X = [Xij ]2i,j=1.

(i) If X ∈ δ−1
AB(0), then δA22Bp(X22) = 0 =⇒ X22B

k
p = 0 =⇒ X22 = 0,

since Bp has dense range. Evidently, the hypothesis δ−1
A11Bp

(0) ⊆ δ−1
A∗11B∗p

(0) =⇒
δA11Bp(X12) = 0 = δA∗11B∗p (X12) =⇒ ranX12 reduces A11, ker⊥X12 re-
duces Bp, and A11|ranX12

and Bp|ker⊥X12
are unitarily equivalent normal

operators. Hence X12 = 0, which since X is a quasiaffinity implies that
K2 = H2 = {0}. Consequently, the hypothesis δ−1

A11Bn
(0) ⊆ δ−1

A∗11B∗n
(0) im-

plies that δA∗B∗(X) = 0.
(ii) If 4AB(X) = 0, then

4A22Bn(X21) = 0 =⇒ X21 = A22X21Bn = Ak
22X21B

k
n = 0,

and
4A22Bp(X22) = 0 =⇒ X22 = A22X22Bp = Ak

22X22B
k
p = 0.

Since X is a quasiaffinity, K2 = H2 = {0}. Consequently, the hypothesis
4−1

A11Bn
(0) ⊆ 4−1

A∗11B∗n
(0) implies that 4A∗B∗(X) = 0.

The numerical range W (T ) of an operator T ∈ B(H) is the set {〈Tx, x〉 :
||x|| = 1}. Recall from Embry [6] that if A and B ∈ B(H) are commuting
normal operators, and if X ∈ B(H) is such that 0 /∈ W (X) and δAB(X) = 0,
then A = B. Thus, if A is a normal operator such that δA∗A(X) = 0 for
some operator X such that 0 /∈ W (X), then A is self-adjoint. That a similar
result holds for operators A ∈ p − H is proved in [9, Theorem 2]. In the
following we prove an analogue of Embry’s result for operators A ∈ P1 such
that δA∗A(X) = 0 or 4A∗A(X) = 0. Let ∂D denote the boundary of the
unit disc.

Theorem 2.2. Let A ∈ P1 have the decomposition A = An ⊕ Ap into
its normal and pure parts (alongwith the matrix decomposition above). Let
X ∈ B(H) be invertible.

(i) If 0 /∈ W (X), δA∗A(X) = 0 and δ−1
A∗11Ap

(0) ⊆ δ−1
A11A∗p

(0), then A is the
direct sum of a self-adjoint operator and a nilpotent operator (where either
component may act on the trivial space.)

(ii) If 4A∗A(X) = 0 and 4−1
A∗11Ap

(0) ⊆ 4−1
A11A∗p

(0), then A is unitary.

Proof. (i) If we let A∗ have the matrix representation above, A = An ⊕ Ap

and X = [Xij ]2i,j=1, then δA∗11Ap(X12) = 0. Hence, since δ−1
A∗11Ap

(0) ⊆
δ−1
A11A∗p

(0), ker⊥(X12) reduces Ap, and A∗11|ran(X12)
and Ap|ker⊥X12

are unitar-
ily equivalent normal operators [3, Lemma 1(i)]. Since Ap is pure, we must
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have that X12 = 0. Consequently, X22 is injective. Since X22 ∈ δ−1
A∗22Ap

(0)

and A∗22
k = 0, X22A

k
p = 0 =⇒ Ap is k-nilpotent. To complete the proof

we observe now that if A∗ = XAX−1 and 0 /∈ W (X), then σ(A) is real [9,
Lemma 3]. Since σ(A) = σ(An)∪σ(Ap) and An is normal, An is self-adjoint.

(ii) Representing A∗, A and X as in (i) above, it is seen that

4A11∗Ap(X12) = 0 = 4A11A∗p(X12),

and hence that ker⊥(X12) reduces Ap and Ap|ker⊥(X12) is normal [3, Lemma
1(ii)]. Since Ap is pure, X12 = 0 and X22 ∈ 4−1

A∗22Ap
(0). Since A22 is k-

nilpotent, X22 = 0 =⇒ X = X11 and A = An is normal. Hence A∗XA =
X = AXA∗ [3, Corollary3] =⇒ |X|2A = (AX∗A∗)XA = (AX∗)A∗XA =
A|X|2 =⇒ |X|A = A|X|. Letting X have the polar decomposition X =
U |X|, it follows that A∗UA = U =⇒ A is invertible and A−1 is unitarily
equivalent to A∗. Hence σ(A) ⊆ ∂D. Since A is normal, A is unitary.

Remark 2.3. (i) Theorem 2.2(i) has a more satisfactory form for pk−QH
operators. Thus, if an operator A ∈ pk −QH is such that δA∗A(X) = 0 for
some invertible operator X such that 0 /∈ W (X), then σ(A) is real. Hence
An in the decomposition A = An ⊕ Ap being normal is self-adjoint. Since
a pk −QH operator with zero Lebsgue area measure is the direct sum of a
normal operator with a nilpotent operator [8, Corollary 6], Ap is nilpotent
and A is the direct sum of a self-adjoint operator with a nilpotent operator.
Hence: If A ∈ pk −QH, 0 /∈ W (X) and δA∗A(X) = 0, then A is the direct
sum of a self-adjoint operator with a nilpotent operator (cf. [9, Theorem
5]). Observe that if the operator A of Theorem 2.2(i) is reduction normaloid
(i.e., the restriction of A to reducing subspaces of A is normaloid), then A
is self-adjoint. Although pk − QH operators are not normaloid, p −H op-
erators are (reduction normaloid). Hence, if A ∈ p − H, 0 /∈ W (X) and
δA∗A(X) = 0, then A is a self-adjoint operator [9, Theorem 2].
(ii) Let A ∈ pk − QH and assume that 4A∗A(X) = 0 for some invertible
operator X. Then A is left invertible. Hence, if A has a dense range (evi-
dently, see definition, such a pk − QH operator is a p −H operator), then
A is invertible, and so σ(A) ⊆ ∂D. Since a p −H operator with spectrum
in ∂D is unitary, A is unitary.

Applications. The restriction of a pk − QH operator to an invariant
subspace is again a pk − QH operator. We assume in the following that
0 < p < 1 and k ≥ 1. Recall that every A ∈ pk − QH ∩ B(H) has a
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representation

A =
(

A11 A12

0 A22

) (
T kH

T ∗k−1(0)

)
,

where A11 ∈ p − H and Ak
22 = 0 [8]. Evidently δ−1

A11N (0) ⊆ δ−1
A∗11N∗(0) for

every normal operator N and δ−1
A11T (0) = {0} for all pure p-hyponormal or

dominant operators T ∗ [2, Theorem 7 and Corollary 8]. If S is a hyponormal
operator and T ∗ is a dominant operator, then 4−1

ST (0) ⊆ 4−1
S∗T ∗(0): this is a

consequence of the fact that δ−1
ST (0) ⊆ δ−1

S∗T ∗(0) (see [1, Theorem 1] and [3,
Theorem 2]). Since to every p-hyponormal operator R there corresponds a
hyponormal operator S and a quasiaffinity X such that XR = RS [4, Proof
of Theorem 1], it follows that4−1

A11T (0) ⊆ 4−1
A∗11T ∗(0) for every p-hyponormal

or dominant operator T ∗.

Theorem 2.4. Let A ∈ pk − QH ∩ B(H) and B ∈ B(K). If B∗ is an
either p-hyponormal or injective dominant or injective pk − QH operator
(resp., B∗ is an either p-hyponormal or dominant or pk − QH operator),
then δ−1

AB(0) ⊆ δ−1
A∗B∗(0) (resp., 4−1

AB(0) ⊆ 4−1
A∗B∗(0)).

Proof. Let dAB stand for either of δAB and 4AB. For a Y ∈ d−1
AB(0), define

the quasiaffinity X : ker⊥Y −→ ranY by setting Xx = Y x for each x ∈
K. Evidently, ranY is invariant for A and ker⊥Y is invariant for B∗, and
dA1B1(X) = 0, where A1 = A|ranY ∈ pk−QH and B∗

1 = B∗|ker⊥Y is either p-
hyponormal or injective dominant or an injective pk−QH operator. In view
of our remarks above, it follows from Theorem 2.1 that B1 is normal and
dA∗1B∗1 (X) = 0. Observe that dA1B1(X) = 0 = dA∗1B∗1 (X), B1 normal, implies
that A1 is normal. It is not difficult to verify that invariant subspaces M
of a pk−QH operator A such that A|M is injective normal are reducing [9,
Lemma 10]; hence A = A1⊕A0 for some operator A0. But then dA∗1B∗1 (X) =
0 =⇒ dA∗B∗(X) = 0.

Remark 2.5. (i).The hypothesis that B∗ is an injective dominant or an
injective pk − QH operator can not be relaxed in Theorem 2.4. Thus, let
A = B = N ⊕ K, where N is normal and K is k-nilpotent. Then A and
B∗ ∈ pk − QH. Let X1 be any operator in the commutant of N , and
let X = X1 ⊕ Kk−1. Then δAB(X) = 0, but δA∗B∗(X) 6= 0. Again, let
A = N ⊕K, X = 0 ⊕Kk−1 and B∗ = D ⊕ 0 for some dominant operator
D. Then δAB(X) = 0, but δA∗B∗(X) 6= 0.
(ii). If A ∈ pk − QH is such that A|

ranAk is normal, then ranAk reduces

A. To see this, let A =
(

A11 A12

0 A22

)(
ranAk

kerA∗k

)
, where A11 is normal.
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Let A11 = N ⊕ 0, where N is injective normal. Then [9, Lemma 10] implies

that A =




N 0 0
0 0 A2

0 0 A22


 = N ⊕

(
0 A2

0 A22

)
= N ⊕A0. The operator A0

is (of necessity) pk–quasihyponormal. It is easily verified that A0 is k + 1–
nilpotent. Hence σ(A0) = {0}. Applying [8, Corollary 6], it follows that A0

is the direct sum of a normal with a nilpotent. Evidently, A2 = 0.

Various combinations (such as A ∈ pk−QH is injective and B∗ ∈ p−H
(see [9, Theorem 11]) and variants (such as A ∈ pk−QH and B∗ ∈ pk−QH
such that B∗−1(0) is reducing (=⇒ the pure part B∗

p of B∗ is injective)) are
possible in Theorem 2.4: we leave the formulation of such combinations to
the reader. A version of Theorem 2.4 holds for pk − QH operators A and
spectral operators B. (See [5, Chapter XV] for information on spectral and
scalar operators.)

Theorem 2.6. If δAB(X) = 0 (resp., 4AB(X) = 0) for some operator
A ∈ pk−QH, spectral operator B ∈ B(K) such that BK = BkK and quasi-
affinity X (resp., some operator A ∈ pk −QH such that 0 ∈ σ(A) =⇒ 0 ∈
σp(A), spectral operator B and quasiaffinity X), then A is normal, B is a
scalar operator similar to A and δA∗B∗(X) = 0 (resp., A is an invertible
normal operator, B is a scalar operator similar to A and 4A∗B∗(X) = 0).

Proof. Case δAB(X) = 0. The hypothesis BK = BkK implies that B ∈
B(BK⊕B∗−1(0)) has a representation B = B11 ⊕ 0, where B11 is spectral,
and X ∈ B(BK ⊕ B∗−1(0), AkH ⊕ A∗k−1(0)) has a representation X =(

X11 X12

0 X22

)
. Since ranAkranX = ranXranBk = ranXranB, X11 is a

quasiaffinity. Hence δA11B11(X11) = 0 =⇒ A11 is normal, B11 is a scalar
operator similar to A11, and δA∗11B∗11(X11) = 0 [7, Theorem 11]. Since X22

has dense range, δAB(X) = 0 =⇒ A22X22 = 0 =⇒ A22 = 0. Evidently,
A12 = 0. (Observe that A11 is normal =⇒ ranAk reduces A; see Remark
2.5(ii).) Hence, δA∗B∗(X) = 0, A is normal and B is a scalar operator similar
to A.

Case 4AB(X) = 0. Since X is a quasiaffinity, and since 0 /∈ σp(A) =⇒
0 /∈ σ(A), the hypothesis 4AB(X) = 0 implies that A is an invertible p-
hyponormal operator such that δA−1B(X) = 0. Applying [7, Theorem 11],
it follows that A−1 is normal, B is a scalar operator similar to A−1 and
δA∗−1B∗(X) = 0 = 4A∗B∗(X).
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