Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 21:2 (2007), 85-98

ON SOME CHARACTERIZATIONS OF VIVIDLY AND BLURLY $(1,2)-\beta$-IRRESOLUTE MAPPINGS

S. Athisaya Ponmani, R. Raja Rajeswari, M. Lellis Thivagar and Erdal Ekici

Abstract

The aim of this paper is to introduce and characterize the vividly $(1,2)-\beta$-irresolute mapping and blurly (1, 2$)$ - β-irresolute mapping. We also define $(1,2)-\beta-T_{2}$ spaces and (1,2)-semi-preregular spaces. These spaces are characterized by a new class of open sets, called $(1,2)$ -semipre- θ-open sets.

1 Introduction

In 1983, Abd El-Monsef et al.[1] defined β-open sets and Andrijevic [2] called these sets as semi-preopen sets. The notion of semi-pre θ-open sets was introduced by Noiri [6] in 2003. The concept of (1,2)-semi-preopen sets were defined and investigated by Raja Rajeswari and Lellis Thivagar [7] in 2005. The notion of (1,2)-semi-preirresolute mapping what we call as $(1,2)-\beta$-irresolute mapping, was introduced by Navalagi et al.[5]. In this paper, we define the vividly $(1,2)-\beta$-irresolute mappings and blurly $(1,2)-\beta$ irresolute mappings. Also we introduce and investigate some properties of $(1,2)$-semipre- θ-open sets in bitopological spaces and characterize the vivid $(1,2)-\beta$-irresolute mappings and blur (1,2)- β-irresolute mappings. Also the $(1,2)-\beta-T_{2}$ spaces and the (1,2)-semi-preregular spaces are defined and characterized by the class of (1,2)-semipre- θ-open sets.

[^0]
2 Preliminaries

The interior and the closure of a subset A of a topological space (X, τ) are denoted by $\operatorname{int}(A)$ and $\operatorname{cl}(A)$ respectively.

A subset A of a topological space (X, τ) is said to be semi-preopen [2] if $A \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$ and semi-preclosed if its complement in X is semipreopen. The semi-preclosure of a subset A of X, denoted by $\operatorname{spcl}(A)$, is the intersection of all the semi-preclosed sets containing A and A is semipreclosed if $A=\operatorname{spcl}(A)$. The semi-preinterior of a subset A of X, denoted by $\operatorname{spint}(A)$ is the union of all the semi-preopen sets contained in A and A is semi-preopen if $A=\operatorname{spint}(A)$. The family of all semi-preopen sets of X is denoted by $S P O(X)$.

A point $x \in X$ is called semipre- θ-cluster point [6] if $A \cap \operatorname{spcl}(U) \neq \emptyset$ for each semipre-open set U containing x. The semipre- θ-cluster points of A is called the semipre- θ-closure of A and is denoted by $\operatorname{spcl}_{\theta}(A)$. A subset A is semipre- θ-closed if $\operatorname{spcl}_{\theta}(A)=A$. The family of all the semipre- θ-open sets of a space X is denoted by $S P \theta O(X)$.

The complement of a semipre- θ-closed set in X is semipre- θ-open. The semipre- θ-interior of A, denoted by $\operatorname{spint}_{\theta}(A)$ is defined as follows. $\operatorname{spint}_{\theta}(A)=\{x \in X: x \in U \subset \operatorname{spcl}(U) \subset A$ for some semi-preopen set U of $X\}$.

Definition $1 A$ topological space X is said to be $\beta-T_{2}[6]$ if for $x, y \in X$, $x \neq y$, there exist disjont semi-preopen sets U, V such that $x \in U$ and $y \in V$.

Definition 2 A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called β-irresolute [4] if $f^{-1}(V)$ is semi-preopen for every semi-preopen set V in Y.

In the following sections by X, Y and Z, we mean a bitopological space $\left(X, \tau_{1}, \tau_{2}\right),\left(Y, \sigma_{1}, \sigma_{2}\right)$ and $\left(Z, \varrho_{1}, \varrho_{2}\right)$, respectively.

Definition 3 A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called $\tau_{1} \tau_{2}$ open [3] if $A \in \tau_{1} \cup \tau_{2}$ and $\tau_{1} \tau_{2}$-closed if its complement in X is $\tau_{1} \tau_{2}$-open.

Definition $4 A$ subset A of a space X is said to be an $(1,2)$-semi-preopen set [7] if $A \subset \tau_{1} \tau_{2}-c l\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-c l(A)\right)\right)$ and (1,2)-semi-preclosed if its complement in X is $(1,2)$-semi-preopen.

The family of all
(i). (1,2)-semi-preopen sets in X is denoted by $(1,2)-S P O(X)$.
(ii). (1,2)-semi-preopen sets containing $x \in X$ is denoted by $(1,2)-S P O(X, x)$.
(iii). (1,2)-semi-preclosed sets in X is denoted by $(1,2)-S P C(X)$.

Definition 5 For any subset A of a bitopological space X, the (1,2)-semipreclosure[7] of A denoted by $(1,2)-\operatorname{spcl}(A)$ is the intersection of all the $(1,2)$-semi-preclosed sets containing A. The (1,2)-semi-preinterior of a subset A of X is the union of all the $(1,2)$-semi-preopen sets contained in A, and is denoted by $(1,2)$-spint (A) and A is $(1,2)$-semi-preopen if $(1,2)$-spint (A) $=A$.

Remark 6 It was observed that a subset A of a bitopological space X is $(1,2)$-semi-preclosed if $(1,2)-\operatorname{spcl}(A)=A$. If $A \subset B$, then $(1,2)-\operatorname{spcl}(A)$ $\subset(1,2)-\operatorname{spcl}(B)$.

Definition 7 A map $f: X \rightarrow Y$ is called $(1,2)$ - β-irresolute [5] if $f^{-1}(V)$ is (1,2)-semi-preopen for every $(1,2)$-semi-preopen set V in Y.

3 (1,2)-semi-preregular sets and (1,2)-semipre- θ-open sets

In this section we define the (1,2)-semi-preregular sets and (1,2)-semipre- θ open sets and investigate some of their properties.

Lemma 8 The following hold for a subset A of X.
(i). (1,2)-spint $(A)=A \cap \tau_{1} \tau_{2}-c l\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-c l(A)\right)\right)$.
(ii). $(1,2)-\operatorname{spcl}(A)=A \cup \tau_{1} \tau_{2}-\operatorname{int}\left(\tau_{1}-\operatorname{cl}\left(\tau_{1} \tau_{2}-\operatorname{int}(A)\right)\right)$.
(iii). $x \in(1,2)-\operatorname{spcl}(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in(1,2)$ $S P O(X, x)$.
(iv). $(1,2)-\operatorname{spcl}(X \backslash A)=X \backslash(1,2)-\operatorname{spint}(A)$.

Definition 9 A subset A of a space X is said to be (1,2)-semi-preregular (briefly (1,2)-sp-regular) if it is both (1,2)-semi-preopen and (1,2)-semi-preclosed.

The family of all
(i). (1,2)-semi-preregular sets in X is denoted by $(1,2)-S P R(X)$.
(ii). (1,2)-semi-preregular sets containing $x \in X$ is denoted by $(1,2)-S P R(X, x)$.

Theorem 10 Let A be a subset of X. Then
(i). $A \in(1,2)-S P O(X)$ if and only if $(1,2)-\operatorname{spcl}(A) \in(1,2)-S P R(X)$.
(ii). $A \in(1,2)-S P C(X)$ if and only if $(1,2)-\operatorname{spint}(A) \in(1,2)-S P R(X)$.

Proof. (i). Necessity. Let $A \in(1,2)-S P O(X)$. Then $A \subset \tau_{1} \tau_{2}-c l$ $\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-\operatorname{cl}(A)\right)\right)$ and so $(1,2)-\operatorname{spcl}(A) \subset(1,2)-\operatorname{spcl}\left(\tau_{1} \tau_{2}-\operatorname{cl}\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-\right.\right.\right.$ $\operatorname{cl}(A)))) \subset(1,2)-\operatorname{spcl}\left(\tau_{1} \tau_{2}-c l\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-c l((1,2) \operatorname{spcl}(A))\right)\right)\right)$ and hence $(1,2)-$ $\operatorname{spcl}(A) \subset \tau_{1} \tau_{2}-\operatorname{cl}\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-c l((1,2)-\operatorname{spcl}(A))\right)\right)$. Hence $(1,2)-\operatorname{spcl}(A)$ is $(1,2)$-semi-preopen and it is $(1,2)$-semi-preclosed. Thus $(1,2)-\operatorname{spcl}(A) \in$ $(1,2)-S P R(X)$.
Sufficiency. Let $(1,2)-\operatorname{spcl}(A) \in(1,2)-S P R(X)$. Then $(1,2)-\operatorname{spcl}(A)$ is $(1,2)$-semi-preopen and (1,2)-semi-preclosed. Therefore, $A \subset(1,2)$-spcl (A) $\subset \tau_{1} \tau_{2}-c l\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-c l((1,2)-\operatorname{spcl}(A))\right) \subset \tau_{1} \tau_{2}-c l\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-c l\left(\tau_{1} \tau_{2}-c l(A)\right)\right)\right)\right.$ $=\tau_{1} \tau_{2}-\operatorname{cl}\left(\tau_{1}-\operatorname{int}\left(\tau_{1} \tau_{2}-c l(A)\right)\right)$. Hence A is $(1,2)$-semi-preopen.
(ii). Follows from (i) and Lemma 8.

Theorem 11 For a subset A of a space X, the following are equivalent.
(i). $A \in(1,2)-S P R(X)$.
(ii). $A=(1,2)-\operatorname{spint}((1,2)-\operatorname{spcl}(A))$.
(iii). $A=(1,2)-\operatorname{spcl}((1,2)-\operatorname{spint}(A))$.

Proof. $(i) \Rightarrow(i i)$. If $A \in(1,2)-S P R(X)$ then A is (1,2)-semi-preclosed and $(1,2)-\operatorname{spcl}(A)=A$ and therefore, $(1,2)-\operatorname{spint}((1,2)-\operatorname{spcl}(A))=A$ since A is (1,2)-semi-preopen.
$(i i) \Rightarrow(i)$. Since $(1,2)-\operatorname{spcl}(A)$ is $(1,2)$-semi-preclosed, by Theorem 10 , $(1,2)-\operatorname{spint}((1,2)-\operatorname{spcl}(A)) \in(1,2)-S P R(X)$ and then $A \in(1,2)-S P R(X)$.
$(i) \Rightarrow(i i i)$. Follows from the fact that A is (1,2)-semi-preopen and (1,2)-semi-preclosed.
$(i i i) \Rightarrow(i)$. Since $(1,2)$-spint (A) is $(1,2)$-semi-preopen and by Theorem $10,(1,2)-\operatorname{spcl}((1,2)-\operatorname{spint}(A)) \in(1,2)-S P R(X)$, then $A \in(1,2)-S P R(X)$.

The (1,2)-semipre- θ-interior and (1,2)-semipre- θ-closure of a subset A of X are denoted by $(1,2)-\operatorname{spint}_{\theta}(A)$ and $(1,2)-\operatorname{spcl}_{\theta}(A)$ are defined as follows. $(1,2)-\operatorname{spint}_{\theta}(A)=\{x \in X: x \in U \subset(1,2)-\operatorname{spcl}(U) \subset A$ for some (1,2)-semipreopen set U of $X\}$ and
$(1,2)-\operatorname{spcl}_{\theta}(A)=\{x \in X:(1,2)-\operatorname{spcl}(U) \cap A \neq \emptyset$ for every (1,2)-semi-preopen set containing $x\}$

Remark 12 Let A be a subset of X. Then
(i). A is $(1,2)$-semipre- θ-open (briefly (1,2)-sp- θ-open) if and only if A $=(1,2)-$ spint $_{\theta}(A)$ and $(1,2)$-semipre- θ-closed (briefly $(1,2)$-sp- θ-closed) if and only if $A=(1,2)-\operatorname{spcl}_{\theta}(A)$.
(ii). $X \backslash(1,2)-\operatorname{spint}_{\theta}(A)=(1,2)-\operatorname{spcl}_{\theta}(X \backslash A)$ and $(1,2)-\operatorname{spint}_{\theta}(X \backslash A)$ $=X \backslash(1,2)-\operatorname{spcl}_{\theta}(A)$.
(iii). $(1,2)-$ spint $_{\theta}(A)$ is $(1,2)-s p-\theta$-open and $(1,2)-\operatorname{spcl}_{\theta}(A)$ is $(1,2)-s p-\theta$ closed.

Theorem 13 For any two subsets A, B of X, the following statements hold.
(i). $(1,2)-$ spint $_{\theta}\left((1,2)-\operatorname{spint}_{\theta}(A)\right) \subset(1,2)-\operatorname{spint}_{\theta}(A)$.
(ii). If $A \subset B$, then $(1,2)-$ spint $_{\theta}(A) \subset(1,2)-$ spint $_{\theta}(B)$.
(iii). $(1,2)-$ spint $_{\theta}(A) \cup(1,2)-$ spint $_{\theta}(B) \subset(1,2)-$ spint $_{\theta}(A \cup B)$.
(iv). $(1,2)-$ spint $_{\theta}(A \cap B) \subset(1,2)-$ spint $_{\theta}(A) \cap(1,2)-$ spint $_{\theta}(B)$.

Theorem 14 For a subset A of X, the following properties hold.
(i). If $A \in(1,2)-S P O(X)$, then $(1,2)-\operatorname{spcl}(A)=(1,2)-\operatorname{spcl}_{\theta}(A)$.
(ii). $A \in(1,2)-S P R(X)$, if and only if A is $(1,2)$-sp- θ-open and $(1,2)$-sp-θ-closed.

Proof. (i). For any $A \subset X$, it is observed that $(1,2)-\operatorname{spcl}(A)$ $\subset(1,2)-\operatorname{spcl}_{\theta}(A)$. Let $A \in(1,2)-S P O(X)$ and $x \notin(1,2)-\operatorname{spcl}(A)$. Then, there exists $V \in(1,2)-S P O(X, x)$ such that $V \cap A=\emptyset$. Since $A \in(1,2)-$ $S P O(X),(1,2)-\operatorname{spcl}(V) \cap A=\emptyset$. Hence $x \notin(1,2)-\operatorname{spcl}_{\theta}(A)$. Therefore, $(1,2)-\operatorname{spcl}_{\theta}(A) \subset(1,2)-\operatorname{spcl}(A)$.
(ii). Let $A \in(1,2)-S P R(X)$. Then A is (1,2)-semi-preopen and (1,2)-semi-preclosed and by $(i), A$ is $(1,2)$-sp- θ-closed. Since $X \backslash A$ is $(1,2)$-semipreopen and (1,2)-semi-preclosed, $X \backslash A$ is (1,2)-sp- θ-closed and hence A is $(1,2)$-sp- θ-open.

Conversely, if A is (1,2)-sp- θ-open, then $A=(1,2)-\operatorname{spint}_{\theta}(A) \subset(1,2)$ $\operatorname{spint}(A)$ and therefore, A is $(1,2)$-semi-preopen. If A is $(1,2)$-sp- θ-closed, then $(1,2)-\operatorname{spcl}(A) \subset(1,2)-\operatorname{spcl}_{\theta}(A)=A$ and hence A is $(1,2)$-semi-preclosed. Thus we obtain $A \in(1,2)-S P R(X)$.

Theorem 15 If A_{α} is (1,2)-sp- θ-closed in X for each $\alpha \in \Delta$, then $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is $(1,2)$-sp- θ-closed.

Proof. For each $\alpha \in \Delta$, if A_{α} is (1,2)-sp- θ-closed, then $(1,2)-\operatorname{spcl}_{\theta}\left(A_{\alpha}\right)$ $=A_{\alpha}$. We have $(1,2)-$ spcl $_{\theta}\left(\bigcap_{\alpha \in \Delta} A_{\alpha}\right) \subset \bigcap_{\alpha \in \Delta}(1,2)-$ spcl $_{\theta} A_{\alpha}=\bigcap_{\alpha \in \Delta}\left(A_{\alpha}\right)$. It is obvious that $\bigcap_{\alpha \in \Delta}\left(A_{\alpha}\right) \subset(1,2)-$ spcl $_{\theta}\left(\bigcap_{\alpha \in \Delta} A_{\alpha}\right)$. Hence $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is $(1,2)$-sp- θ-closed.

Remark 16 The union of two (1,2)-sp- θ-closed sets is not $(1,2)$-sp- θ-closed, in general as shown in the following example.

Example 17 Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset, X\}$ and $\tau_{2}=\{\emptyset,\{b, c\}, X\}$. Then the sets $\{b\},\{c\}$ are $(1,2)$-sp- θ-closed but $\{b, c\}$ is not $(1,2)$-sp- θ-closed.

Remark 18 If A_{α} is (1,2)-sp- θ-open in X for each $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is $(1,2)$-sp- θ-open in X.

Remark 19

(i). Every $(1,2)$-semi-preregular set is $(1,2)$-sp- θ-open.
(ii). Every $(1,2)$-sp- θ-open set is $(1,2)$-semi-preopen.

Remark 20 The statements (i) and (ii) of Remark 19 are not reversible as shown in the following examples.

Example 21 Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset, X\}$ and $\tau_{2}=\{\emptyset,\{b, c\}, X\}$. Then the set $\{b, c\}$ is $(1,2)$-sp- θ-open but it is not $(1,2)$-semi-preregular.

Example 22 Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\}, X\}$ and $\tau_{2}=\{\emptyset,\{b\},\{c\}$, $\{b, c\}, X\}$. Then $\{a\}$ is (1,2)-semi-preopen but not (1,2)-sp- θ-open.

4 Blurly (1,2)- β-Irresolute Mappings

In this section we introduce the notion of blurly (1,2)- β-irresolute mappings and study some properties.

Definition 23 A map $f: X \rightarrow Y$ is called blurly $(1,2)-\beta$-irresolute if for each point $x \in X$ and each $V \in(1,2)-S P O(X, f(x))$, there exists a $U \in(1,2)-S P O(X, x)$ such that $f(U) \subset(1,2)-\operatorname{spcl}(V)$.

Remark 24 Every (1,2)- β-irresolute map is blurly (1,2)- β-irresolute but the converse is not true.

Example 25 Let X be the space as in Example 21, and let $Y=\{p, q, r\}$, $\sigma_{1}=\{\emptyset,\{p\},\{p, q\}, Y\}$ and $\sigma_{2}=\{\emptyset,\{p\}, X\}$. Define a function $f: X \rightarrow Y$ as $f(a)=p, f(b)=r$ and $f(c)=q$. Then f is blurly $(1,2)-\beta$-irresolute but not (1,2)- β-irresolute.

Definition $26 A$ space X is said to be (1,2)- $\beta-T_{2}$ if for each pair of distinct points $x, y \in X$, there exist $U \in(1,2)-S P O(X, x)$ and $V \in(1,2)-S P O(X, y)$ such that $U \cap V=\emptyset$.

Lemma $27 A$ space X is $(1,2)-\beta-T_{2}$ if and only if for each pair of distinct points $x, y \in X$, there exist $U \in(1,2)-S P O(X, x)$ and $V \in(1,2)-S P O(X, y)$ such that $(1,2)-\operatorname{spcl}(U) \cap(1,2)-\operatorname{spcl}(V)=\emptyset$.

Proof. Follows from Theorem 10.
Theorem 28 If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are (1,2)- β-irresolute, then the composition $g \circ f$ is (1,2)- β-irresolute.

Theorem 29 For a function $f: X \rightarrow Y$, the following properties are equivalent.
(i). f is blurly (1,2)- β-irresolute.
(ii). $f^{-1}(V) \subset(1,2)-\operatorname{spint}\left(f^{-1}((1,2)-\operatorname{spcl}(V))\right)$ for every $V \in(1,2)-S P O(Y)$.
(iii). $(1,2)-\operatorname{spcl}\left(f^{-1}(V)\right) \subset f^{-1}((1,2)-\operatorname{spcl}(V))$ for every $V \in(1,2)-S P O(Y)$.

Proof. $(i) \Rightarrow(i i)$. Let $V \in(1,2)-S P O(Y)$ and $x \in f^{-1}(V)$. Since f is blurly $(1,2)-\beta$-irresolute, $f(U) \subset(1,2)-\operatorname{spcl}(V)$ for some $U \in(1,2)$ $S P O(X, x)$. Therefore, $U \subset f^{-1}((1,2)-\operatorname{spcl}(V))$ and $x \in U \subset(1,2)$-spint $\left(f^{-1}((1,2)-\operatorname{spcl}(V))\right)$. Hence $f^{-1}(V) \subset(1,2)-\operatorname{spint}\left(f^{-1}((1,2)-\operatorname{spcl}(V))\right)$. $(i i) \Rightarrow(i i i)$. Let $V \in(1,2)-S P O(Y)$ and $x \notin f^{-1}((1,2)-\operatorname{spcl}(V))$. Then $f(x) \notin(1,2)-\operatorname{spcl}(V)$. Therefore, there exists $W \in(1,2)-S P O(Y, f(x))$ such that $W \cap V=\emptyset$. Since $V \in(1,2)-S P O(Y),(1,2)-\operatorname{spcl}(W) \cap V=\emptyset$ and hence $(1,2)-\operatorname{spint}\left(f^{-1}((1,2)-\operatorname{spcl}(W))\right) \cap f^{-1}(V)=\emptyset$. Then by (ii), we have $x \in f^{-1}(W) \subset(1,2)-\operatorname{spint}\left(f^{-1}((1,2)-\operatorname{spcl}(W))\right) \in(1,2)-S P O(X)$. Therefore, $\quad x \notin(1,2)-\operatorname{spcl}\left(f^{-1}(V)\right)$. Hence, $\quad(1,2)-\operatorname{spcl}\left(f^{-1}(V)\right) \subset$ $f^{-1}((1,2)-\operatorname{spcl}(V))$.
(iii) $\Rightarrow(i)$. Let $x \in X$ and $V \in(1,2)-S P O(Y, f(x))$. Then by Theorem $10,(1,2)-\operatorname{spcl}(V) \in(1,2)-S P R(Y)$ and $x \notin f^{-1}((1,2)-\operatorname{spcl}(Y \backslash(1,2)-$ $\operatorname{spcl}(V))$). Since $Y \backslash(1,2)-\operatorname{spcl}(V) \in(1,2)-S P O(Y)$, by (iii), we have $x \notin(1,2)-\operatorname{spcl}\left(f^{-1}(Y \backslash(1,2)-\operatorname{spcl}(V))\right)$. Hence there exists $U \in(1,2)-$ $S P O(X, x)$ such that $U \cap f^{-1}(Y \backslash(1,2)-\operatorname{spcl}(V))=\emptyset$. Therefore, $f(U) \cap$ $(Y \backslash(1,2)-\operatorname{spcl}(V))=\emptyset$ and so $f(U) \subset(1,2)-\operatorname{spcl}(V)$.

Theorem 30 If $f: X \rightarrow Y$ is $(1,2)$ - β-irresolute and V is $(1,2)$-sp- θ-open in Y, then $f^{-1}(V)$ is $(1,2)$-sp- θ-open in X.

Proof. Let V be $(1,2)$-sp- θ-open in Y and $x \in f^{-1}(V)$. Then there exists $W \in(1,2)-S P O(Y)$ such that $f(x) \in W \subset(1,2)-\operatorname{spcl}(W) \subset V$. Since f is $(1,2)-\beta$-irresolute, $f^{-1}(W) \in(1,2)-S P O(X)$ and $(1,2)-\operatorname{spcl}\left(f^{-1}(W)\right)$ $\subset f^{-1}((1,2)-\operatorname{spcl}(W))$. Therefore, we have $x \in f^{-1}(W) \subset(1,2)-\operatorname{spcl}\left(f^{-1}(W)\right)$ $\subset f^{-1}(V)$. Hence $f^{-1}(V)$ is $(1,2)$-sp- θ-open in X.

Theorem 31 For a function $f: X \rightarrow Y$, the following are equivalent.
(i). f is blurly (1,2)- β-irresolute.
(ii). $(1,2)-\operatorname{spcl}\left(f^{-1}(B)\right) \subset f^{-1}\left((1,2)-\right.$ spcl $\left._{\theta}(B)\right)$ for every subset B of Y.
(iii). $f((1,2)-\operatorname{spcl}(A)) \subset(1,2)-\operatorname{spcl}_{\theta}(f(A))$ for every subset A of X.
(iv). $f^{-1}(F) \in(1,2)-S P C(X)$ for every $(1,2)-s p-\theta$-closed subset F of Y.
(v). $f^{-1}(V) \in(1,2)-S P O(X)$ for every $(1,2)$-sp- θ-open set V of Y.

Proof. $\quad(i) \Rightarrow(i i)$. Let B be any subset of Y and $x \notin f^{-1}((1,2)$ $\left.\operatorname{spcl}_{\theta}(B)\right)$. Then $f(x) \notin(1,2)-\operatorname{spcl}_{\theta}(B)$ and there exists $V \in(1,2)-$
$\operatorname{SPO}(Y, f(x))$ such that $(1,2)-\operatorname{spcl}(V) \cap B=\emptyset$. Since f is blurly (1,2)-β-irresolute, there exists $U \in(1,2)-S P O(X, x)$ such that $f(U) \subset(1,2)$ $\operatorname{spcl}(V)$. Hence $f(U) \cap B=\emptyset$ and $U \cap f^{-1}(B)=\emptyset$. Thus we obtain x $\notin(1,2)-\operatorname{spcl}\left(f^{-1}(B)\right)$.
(ii) \Rightarrow (iii). Let A be any subset of X. By (ii), (1,2)-spcl (A) $\subset(1,2)-\operatorname{spcl}\left(f^{-1}(f(A))\right) \subset f^{-1}\left((1,2)-\operatorname{spcl}_{\theta}(f(A))\right)$ and so $f((1,2)-\operatorname{spcl}(A))$ $\subset(1,2)-\operatorname{spcl}_{\theta} f((A))$.
(iii) \Rightarrow (iv). Let F be $(1,2)$-sp- θ-closed in Y. Then, by (iii), $f\left((1,2)-\operatorname{spcl}\left(f^{-1}(F)\right)\right) \subset(1,2)-\operatorname{spcl}_{\theta}\left(f\left(f^{-1}(F)\right)\right) \subset(1,2)-\operatorname{spcl}_{\theta}(F)=F$. Therefore, $(1,2)-\operatorname{spcl}\left(f^{-1}(F)\right) \subset f^{-1}(F)$ and therefore, $(1,2)-\operatorname{spcl}\left(f^{-1}(F)\right)=$ $f^{-1}(F)$.
$(i v) \Rightarrow(v)$. Obvious.
$(v) \Rightarrow(i)$. Let $x \in X$ and $V \in(1,2)-S P O(Y, f(x))$. By Theorem 10 and Theorem 14, (1,2)-spcl (V) is $(1,2)-s p_{\theta}$-open in Y. Set $U=f^{-1}((1,2)$ $\operatorname{spcl}(V))$. Then by our assumption, $U \in(1,2)-S P O(X, x)$ and $f(U) \subset(1,2)-$ $\operatorname{spcl}(V)$. hence f is blurly $(1,2)-\beta$-irresolute.

Theorem 32 For a function $f: X \rightarrow Y$ the following are equivalent.
(i). f is blurly $(1,2)-\beta$-irresolute.
(ii). For each $x \in X$ and each $V \in(1,2)-S P O(Y, f(x))$, there exists
$U \in(1,2)-S P O(X, x)$ such that $f((1,2)-\operatorname{spcl}(U)) \subset(1,2)-\operatorname{spcl}(V)$.
(iii). $f^{-1}(F) \in(1,2)-S P R(X)$ for every $F \in(1,2)-S P R(Y)$.

Proof. $(i) \Rightarrow(i i)$. Let $x \in X$ and $V \in(1,2)-S P O(Y, f(x))$. Then by Theorem 10 and Theorem 14, $(1,2)-\operatorname{spcl}(V)$ is $(1,2)$-sp- θ-open and $(1,2)$ $s p-\theta$-closed. If we let $U=f^{-1}((1,2)-s p c l(V))$ by Theorem $29, U \in(1,2)$ $S P R(X)$. Thus U is (1,2)-semi-preopen and (1,2)-semi-preclosed and therefore, $f((1,2)-\operatorname{spcl}(U)) \subset(1,2)-\operatorname{spcl}(V)$.
$(i i) \Rightarrow(i i i)$. Let $F \in(1,2)-S P R(Y)$ and $x \in f^{-1}(F)$. Then $f(x) \in F$ and hence by our assumption, there exists $U \in(1,2)-S P O(X, x)$ such that $f((1,2)-\operatorname{spcl}(U)) \subset F$. Thus we have $x \in U \subset(1,2)-\operatorname{spcl}(U) \subset f^{-1}(F)$ and hence $f^{-1}(F) \in(1,2)-S P O(X)$. Now $Y \backslash F \in(1,2)-S P R(Y), f^{-1}(Y \backslash F)$ $=X \backslash f^{-1}(F) \in(1,2)-S P R(X)$. Thus $f^{-1}(F)$ is (1,2)-semi-preclosed and
hence $f^{-1}(F) \in(1,2)-S P R(X)$.
$(i i i) \Rightarrow(i)$. Let $x \in X$ and $V \in(1,2)-S P O(Y, f(x))$. Then $(1,2)-\operatorname{spcl}(V)$ $\in(1,2)-\operatorname{SPR}(Y, f(x)) \quad$ by \quad Theorem $\quad 10, \quad$ and $\quad f^{-1}((1,2)-\operatorname{spcl}(V))$ $\in(1,2) \operatorname{SPR}(X, x)$. If we let $U=f^{-1}(1,2)-\operatorname{spcl}(V)$, then $U \in(1,2)-$ $S P O(X, x)$ and $f(U) \subset(1,2)-\operatorname{spcl}(V)$. Therefore, f is blurly (1,2)- β -irresolute.

Theorem 33 For a function $f: X \rightarrow Y$ the following are equivalent.
(i). f is blurly (1,2)- β-irresolute.
(ii). $f^{-1}(V) \subset(1,2)-\operatorname{spint}_{\theta}\left(f^{-1}\left((1,2)-\right.\right.$ spcl $\left.\left._{\theta}(V)\right)\right)$ for every $V \in(1,2)$ $S P O(Y)$.
(iii). $(1,2)-$ spcl $_{\theta}\left(f^{-1}(V)\right) \subset f^{-1}\left((1,2)-\right.$ spcl $\left._{\theta}(V)\right)$ for every $V \in(1,2)$ $S P O(Y)$.

Proof. Proof is similar to that of Theorem 29.
Theorem 34 For a function $f: X \rightarrow Y$ the following are equivalent.
(i). f is blurly (1,2)- β-irresolute.
(ii). $(1,2)-$ spcl $_{\theta}\left(f^{-1}(B)\right) \subset f^{-1}\left((1,2)-\right.$ spcl $\left._{\theta}(B)\right)$ for every subset B of Y.
(iii). $f\left((1,2)-\right.$ spcl $\left._{\theta}(A)\right) \subset(1,2)-$ spcl $_{\theta}(f(A))$ for every subset A of X.
(iv). $f^{-1}(F)$ is $(1,2)$-sp- θ-closed for every $(1,2)$-sp- θ-closed subset F of Y.
(v). $f^{-1}(V)$ is $(1,2)$-sp- θ-open for every $(1,2)$-sp- θ-open set V of Y.

Proof. Proof is similar to that of Theorem 31.
Definition 35 A space X is said to be (1,2)-semi-preregular if for each $F \in(1,2)-S P C(X)$ and each $x \notin F$, there exist disjoint $(1,2)$-semi-preopen sets U and V such that $x \in U$ and $F \subset V$.

Lemma 36 For a space X the following properties are equivalent.
(i). X is $(1,2)$-semi-preregular.
(ii). For each $U \in(1,2)-S P O(X)$ and each $x \in U$, there exists V $\in(1,2)-S P O(X)$ such that $x \in V \subset(1,2)-\operatorname{spcl}(V) \subset U$.
(iii). For each $U \in(1,2)-S P O(X)$ and each $x \in U$, there exists V $\in(1,2)-S P R(X)$ such that $x \in V \subset U$.

Proof. Follows from Theorem 10.
Theorem 37 Let Y be an (1,2)-semi-preregular space. Then a function $f: X \rightarrow Y$ is blurly $(1,2)-\beta$-irresolute if and only if it is $(1,2)-\beta$-irresolute.

Proof. Let f be blurly $(1,2)$ - β-irresolute and V be (1,2)-semi-preopen in Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. Therefore, by Lemma 36 , there exists $W \in(1,2)-S P O(Y)$ such that $f(x) \in W \subset(1,2)-\operatorname{spcl}(W) \subset V$. Since f is blurly (1,2)- β-irresolute, there exists $U \in(1,2)-S P O(X, x)$ such that $f(U)$ $\subset(1,2)-\operatorname{spcl}(W)$. Thus we have $x \in U \subset f^{-1}(V)$ and $f^{-1}(V) \in(1,2)-$ $S P O(X)$. Hence f is $(1,2)-\beta$-irresolute.

The converse follows from Remark 24.
Theorem 38 If Y is $(1,2)-\beta-T_{2}$ and $f: X \rightarrow Y$ is a blurly $(1,2)-\beta$-irresolute injective map, then X is $(1,2)-\beta-T_{2}$.

Proof. Let x, y be two distinct points of X. Since f is injective, $f(x)$ $\neq f(y)$. Since Y is $(1,2)-\beta-T_{2}$, by Lemma $27,(1,2)-\operatorname{spcl}(U) \cap(1,2)-\operatorname{spcl}(V)$ $=\emptyset$. Since f is blurly (1,2)- β-irresolute, there exist $P \in(1,2)-S P O(X, x)$ and $Q \in(1,2)-S P O(X, y)$ such that $f(P) \subset(1,2)-\operatorname{spcl}(V)$ and $f(Q)$ $\subset(1,2)-\operatorname{spcl}(W)$. Therefore, $P \cap Q=\emptyset$. Hence X is $(1,2)-\beta-T_{2}$.

5 Vividly (1,2)- β-Irresolute Mappings

In this section we introduce vividly $(1,2)-\beta$-irresolute mappings.
Definition 39 A map $f: X \rightarrow Y$ is called vividly (1,2)- β-irresolute if for each point $x \in X$ and each $V \in(1,2)-S P O(X, f(x))$, there exists a $U \in(1,2)-S P O(X, x)$ such that $f((1,2)-\operatorname{spcl}(U)) \subset V$.

Remark 40 Every vividly (1,2)- β-irresolute map is $(1,2)-\beta$-irresolute but the converse is not true as shown in the following example.

Example 41 Let $X=\{a, b, c\}, \tau_{1}=\{\emptyset,\{a\}, X\}$ and $\tau_{2}=\{\emptyset,\{b\}, X\}$ and $Y=\{p, q, r\}, \sigma_{1}=\{\emptyset,\{p, q\}, Y\}$ and $\sigma_{2}=\{\emptyset,\{p\}, Y\}$. Define a function $f: X \rightarrow Y$ as $f(a)=p, f(b)=q, f(c)=r$. Then the function is $(1,2)-$ β-irresolute but it is not vividly $(1,2)-\beta$-irresolute since for $a \in X, f(a)=$ $p \in\{p\}$ and for any $U \in(1,2)-\operatorname{SPO}(X, a)(1,2)-\operatorname{spcl}(U)=X \not \subset\{p\}$.

Remark 42 ;From the above discussions we obtain vividly $(1,2)-\beta$-irresolute $\Rightarrow(1,2)$ - β-irresolute \Rightarrow blurly $(1,2)$ - β-irresolute and none of them is reversible.

Theorem 43 For a function $f: X \rightarrow Y$ the following are equivalent.
(i). f is vividly $(1,2)-\beta$-irresolute.
(ii). For each $x \in X$ and each $V \in(1,2)-S P O(Y, f(x))$, there exists U $\in(1,2)-S P O(X, x)$ such that $f\left((1,2)-\right.$ spcl $\left._{\theta}(U)\right) \subset V$.
(iii). For each $x \in X$ and each $V \in(1,2)-S P O(Y, f(x))$, there exists U $\in(1,2)-S P R(X, x)$ such that $f(U) \subset V$.
(iv). For each $x \in X$ and each $V \in(1,2)-S P O(Y, f(x))$, there exists an $(1,2)$-sp- θ-open set U in X containing x such that $f(U) \subset V$.
(v). $f^{-1}(V)$ is $(1,2)$-sp- θ-open for every $V \in(1,2)-S P O(Y)$.
(vi). $f^{-1}(F)$ is $(1,2)$-sp- θ-closed for every $F \in(1,2)-S P C(Y)$.
(vii). $f\left((1,2)-\operatorname{spcl}_{\theta}(A)\right) \subset(1,2)-\operatorname{spcl}(f(A))$ for every subset A of X.
(viii). (1,2)-spcl $\left(f^{-1}(B)\right) \subset f^{-1}((1,2)-\operatorname{spcl}(B))$ for every subset B of Y.

Proof. $(i) \Rightarrow(i i)$. Follows from Theorem 14.
(ii) \Rightarrow (iii). Follows from Theorem 10.
$(i i i) \Rightarrow(i v)$. Follows from Theorem 10.
$(i v) \Rightarrow(v)$. Let $V \in(1,2)-S P O(Y)$. If $x \in f^{-1}(V)$, then $f(x) \in V$ and there exists an (1,2)-sp- θ-open set U in X containing x such that $f(U) \subset V$. Therefore, $x \in U \subset f^{-1}(V)$ and hence $f^{-1}(V)$ is the union of $(1,2)$-sp- θ open sets. Thus $f^{-1}(V)$ is (1,2)-sp- θ-open in X since the union of $(1,2)$-sp-θ-open sets is $(1,2)$-sp- θ-open.
$(v) \Rightarrow(v i)$. Obvious.
$(v i) \Rightarrow(v i i)$. Let $A \subset X$.Since $(1,2)-\operatorname{spcl}(f(A))$ is $(1,2)$-semi-preclosed in Y by $(v i), f^{-1}((1,2)-s p c l(f(A)))$ is $(1,2)-s p-\theta-$ closed in X and $(1,2)-s p c l_{\theta}(A)$ $\subset(1,2)-\operatorname{spcl}_{\theta} \quad f^{-1}(f(A)) \quad \subset \quad(1,2)-\operatorname{spcl}_{\theta}\left(f^{-1}((1,2)-\operatorname{spcl}(f(A)))\right)$ $=f^{-1}((1,2)-\operatorname{spcl}(f(A)))$. Therefore, $f\left((1,2)-\operatorname{spcl}_{\theta}(A)\right) \subset(1,2)-\operatorname{spcl}(f(A))$.
(vii) $\quad \Rightarrow \quad(v i i i)$. Let $B \quad \subset \quad Y$. Then $f\left((1,2)-\operatorname{spcl}_{\theta}\left(f^{-1}(B)\right)\right)$ $\subset(1,2)-\operatorname{spcl}\left(f\left(f^{-1}(B)\right)\right) \subset(1,2)-\operatorname{spcl}(B)$ and hence $(1,2)-\operatorname{spcl}_{\theta}\left(f^{-1}(B)\right)$ $\subset f^{-1}((1,2)-\operatorname{spcl}(B))$.
(viii) $\Rightarrow(i)$. Let $x \in X$ and $V \in(1,2)-S P O(Y, f(x))$. By (viii), $(1,2)-$ spcl $_{\theta}$ $\left(f^{-1}(Y \backslash V)\right) \subset f^{-1}((1,2)-\operatorname{spcl}(Y \backslash V))=f^{-1}(Y \backslash V)$. Therefore, $f^{-1}(Y \backslash V)$ is
(1,2)-sp- θ-closed in X and $f^{-1}(V)$ is (1,2)-sp- θ-open in X and it contains x. Hence there exists $U \in(1,2)-S P O(X, x)$ such that $(1,2)-\operatorname{spcl}(U) \subset f^{-1}(V)$ and $f((1,2)-\operatorname{spcl}(U)) \subset V$.

Theorem 44 Every (1,2)- β-irresolute map $f: X \rightarrow Y$ is vividly $(1,2)-\beta$ irresolute if and only if X is $(1,2)$-semi-preregular.

Proof. Necessity Let $f: X \rightarrow Y$ be the identity function. Then f is $(1,2)-\beta$-irresolute and by the hypothesis, it is vividly $(1,2)-\beta$-irresolute. If $x \in U \in(1,2)-S P O(X)$, then $f(x)=x \in U$, there exists $V \in(1,2)$ $S P O(X, x)$ such that $f((1,2)-\operatorname{spcl}(V)) \subset U$. Therefore, we have $x \in V \subset(1,2)-$ $\operatorname{spcl}(V) \subset U$. Hence by Lemma $36, X$ is $(1,2)$-semi-preregular.
Sufficiency.If $x \in X$ and $V \in(1,2)-S P O(X, f(x))$, then $f^{-1}(V)$ is $(1,2)$ -semi-preopen in X containing x. Since X is $(1,2)$-semi-preregular, there exists $U \in(1,2)-S P O(X)$ such that $x \in U \subset(1,2) \operatorname{spcl}(U) \subset f^{-1}(V)$. Therefore, $f(1,2)-\operatorname{spcl}(U) \subset V, f$ is vividly (1,2)- β-irresolute.

Theorem 45 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Then the following properties hold.
(i). If f is vividly $(1,2)-\beta$-irresolute and g is $(1,2)-\beta$-irresolute, then $g \circ f$ is vividly (1,2)- β-irresolute.
(ii). If f is $(1,2)-\beta$-irresolute and g is vividly $(1,2)-\beta$-irresolute, then $g \circ f$ is vividly $(1,2)-\beta$-irresolute.

Proof. (i). Obvious.
(ii). Follows from Theorem 43 and Theorem 29.

References

[1] Abd. El-Monsef. M.E, El Deeb. S.N. and Mahmoud. R.A, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
[2] Andrijevic. D, Semi-pre open sets Mat. Vesnik, 38 (1986), no.1, 24-32.
[3] Lellis Thivagar. M, Generalization of pairwise α-continuous functions, Pure and Applied Mathematika Sciences, Vol.XXXIII, No. 1-2, (1991), 55-63.
[4] Mahmoud. R. A and Monsef. M. E, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci. , 27 (1990), 285-296.
[5] Navalagi. G. B, Lellis Thivagar. M and Raja Rajeswari. R, Generalized Semi-preclosed sets in Bitopological spacesMathematical Forum, Vol. XXVII (2004-2005).
[6] Noiri. T, Weak and Strong forms of β-irresolute functions, Acta Math. Hungar. 99(4)(2002), 315-328.
[7] Raja Rajewari. R and Lellis Thivagar. M, On Extension of Semi-pre open sets in Bitopological Spaces, Proc. of the National Conference in Pure and Applied Mathematics, (2005), 28-32.
S. Athisaya Ponmani:

Department of Mathematics, Jayaraj Annapackiam
College for Women, Periyakulam, Theni (Dt.)-625601,Tamilnadu,India.
E-mail: athisayaponmani@yahoo.co.in
R. Raja Rajeswari:

Department of Mathematics, Sri Parasakthi College, Courtalam, Tirunelveli (Dt.) -627802,Tamilnadu,India.
E-mail: raji_ arul2000@yahoo.co.in
M. Lellis Thivagar:

Department of Mathematics, Arul Anandar College, Karumathur, Madurai (Dt.)-625514, Tamilnadu, India.
E-mail: mlthivagar@yahoo.co.in

Erdal Ekici:
Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey.
E-mail: eekici@comu.edu.tr

[^0]: 2000 Mathematics Subject Classification. 54C55.
 Key words and phrases. (1, 2)- β - T_{2} space, (1,2)-semi-preregular space, $(1,2)$-semipre-θ-open set, blurly β-irresolute mapping and vividly β-irresolute mapping.

 Received: September 11, 2006

