Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat **21:2** (2007), 85–98

ON SOME CHARACTERIZATIONS OF VIVIDLY AND BLURLY (1, 2)- β -IRRESOLUTE MAPPINGS

S. Athisaya Ponmani, R. Raja Rajeswari, M. Lellis Thivagar and Erdal Ekici

Abstract

The aim of this paper is to introduce and characterize the vividly (1,2)- β -irresolute mapping and blurly (1,2)- β -irresolute mapping. We also define (1,2)- β - T_2 spaces and (1,2)-semi-preregular spaces. These spaces are characterized by a new class of open sets, called (1,2)-semipre- θ -open sets.

1 Introduction

In 1983, Abd El-Monsef et al.[1] defined β -open sets and Andrijevic [2] called these sets as semi-preopen sets. The notion of semi-pre θ -open sets was introduced by Noiri [6] in 2003. The concept of (1, 2)-semi-preopen sets were defined and investigated by Raja Rajeswari and Lellis Thivagar [7] in 2005. The notion of (1, 2)-semi-preirresolute mapping what we call as (1, 2)- β -irresolute mapping, was introduced by Navalagi et al.[5]. In this paper, we define the vividly (1, 2)- β -irresolute mappings and blurly (1, 2)- β -irresolute mappings. Also we introduce and investigate some properties of (1, 2)-semipre- θ -open sets in bitopological spaces and characterize the vivid (1, 2)- β -irresolute mappings. Also the (1, 2)- β -irresolute mappings. Also the (1, 2)- β -irresolute mappings. Also the class of (1, 2)-semi-preregular spaces are defined and characterized by the class of (1, 2)-semi-pre- θ -open sets.

²⁰⁰⁰ Mathematics Subject Classification. 54C55.

Key words and phrases. (1, 2)- β - T_2 space, (1, 2)-semi-preregular space, (1, 2)-semipre- θ -open set, blurly β -irresolute mapping and vividly β -irresolute mapping.

Received: September 11, 2006

2 Preliminaries

The interior and the closure of a subset A of a topological space (X, τ) are denoted by int(A) and cl(A) respectively.

A subset A of a topological space (X, τ) is said to be semi-preopen [2] if $A \subset cl(int(cl(A)))$ and semi-preclosed if its complement in X is semipreopen. The semi-preclosure of a subset A of X, denoted by spcl(A), is the intersection of all the semi-preclosed sets containing A and A is semipreclosed if A = spcl(A). The semi-preinterior of a subset A of X, denoted by spint(A) is the union of all the semi-preopen sets contained in A and A is semi-preopen if A = spint(A). The family of all semi-preopen sets of X is denoted by SPO(X).

A point $x \in X$ is called semipre- θ -cluster point [6] if $A \cap spcl(U) \neq \emptyset$ for each semipre-open set U containing x. The semipre- θ -cluster points of A is called the semipre- θ -closure of A and is denoted by $spcl_{\theta}(A)$. A subset A is semipre- θ -closed if $spcl_{\theta}(A) = A$. The family of all the semipre- θ -open sets of a space X is denoted by $SP\theta O(X)$.

The complement of a semipre- θ -closed set in X is semipre- θ -open. The semipre- θ -interior of A, denoted by $spint_{\theta}(A)$ is defined as follows. $spint_{\theta}(A) = \{x \in X : x \in U \subset spcl(U) \subset A \text{ for some semi-preopen set } U \text{ of } X\}.$

Definition 1 A topological space X is said to be β -T₂ [6] if for $x, y \in X$, $x \neq y$, there exist disjont semi-preopen sets U, V such that $x \in U$ and $y \in V$.

Definition 2 A map $f:(X,\tau) \to (Y,\sigma)$ is called β -irresolute [4] if $f^{-1}(V)$ is semi-preopen for every semi-preopen set V in Y.

In the following sections by X, Y and Z, we mean a bitopological space $(X, \tau_1, \tau_2), (Y, \sigma_1, \sigma_2)$ and (Z, ρ_1, ρ_2) , respectively.

Definition 3 A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ open [3] if $A \in \tau_1 \cup \tau_2$ and $\tau_1\tau_2$ -closed if its complement in X is $\tau_1\tau_2$ -open.

Definition 4 A subset A of a space X is said to be an (1, 2)-semi-preopen set [7] if $A \subset \tau_1\tau_2$ -cl $(\tau_1$ - int $(\tau_1\tau_2$ -cl(A))) and (1, 2)-semi-preclosed if its complement in X is (1, 2)-semi-preopen.

The family of all

- (i). (1, 2)-semi-preopen sets in X is denoted by (1, 2)-SPO(X).
- (ii). (1,2)-semi-preopen sets containing $x \in X$ is denoted by (1,2)-SPO(X,x).
- (iii). (1, 2)-semi-preclosed sets in X is denoted by (1, 2)-SPC(X).

Definition 5 For any subset A of a bitopological space X, the (1,2)-semipreclosure[7] of A denoted by (1,2)-spcl(A) is the intersection of all the (1,2)-semi-preclosed sets containing A. The (1,2)-semi-preinterior of a subset A of X is the union of all the (1,2)-semi-preopen sets contained in A, and is denoted by (1,2)-spint(A) and A is (1,2)-semi-preopen if (1,2)-spint(A) = A.

Remark 6 It was observed that a subset A of a bitopological space X is (1,2)-semi-preclosed if (1,2)-spcl(A) = A. If $A \subset B$, then (1,2)-spcl $(A) \subset (1,2)$ -spcl(B).

Definition 7 A map $f: X \to Y$ is called (1, 2)- β -irresolute [5] if $f^{-1}(V)$ is (1, 2)-semi-preopen for every (1, 2)-semi-preopen set V in Y.

3 (1,2)-semi-preregular sets and (1,2)-semipre- θ -open sets

In this section we define the (1, 2)-semi-preregular sets and (1, 2)-semipre- θ -open sets and investigate some of their properties.

Lemma 8 The following hold for a subset A of X.

- (*i*). (1,2)-spint(A) = A $\cap \tau_1 \tau_2$ -cl(τ_1 int($\tau_1 \tau_2$ -cl(A))).
- (*ii*). (1,2)-spcl(A) = A \cup $\tau_1 \tau_2$ -int(τ_1 cl($\tau_1 \tau_2$ -int(A))).
- (iii). $x \in (1,2)$ -spcl(A) if and only if $A \cap U \neq \emptyset$ for every $U \in (1,2)$ -SPO(X,x).
- (iv). (1,2)-spcl $(X \setminus A) = X \setminus (1,2)$ -spint(A).

Definition 9 A subset A of a space X is said to be (1,2)-semi-preregular (briefly (1,2)-sp-regular) if it is both (1,2)-semi-preopen and (1,2)-semi-preclosed.

The family of all

- (i). (1, 2)-semi-preregular sets in X is denoted by (1, 2)-SPR(X).
- (ii). (1,2)-semi-preregular sets containing $x \in X$ is denoted by (1,2)-SPR(X,x).

Theorem 10 Let A be a subset of X. Then

(*i*). $A \in (1,2)$ -SPO(X) if and only if (1,2)-spcl(A) $\in (1,2)$ -SPR(X).

(*ii*). $A \in (1,2)$ -SPC(X) if and only if (1,2)-spint(A) $\in (1,2)$ -SPR(X).

Proof. (*i*). Necessity. Let $A \in (1,2)$ -SPO(X). Then $A \subset \tau_1\tau_2$ -cl $(\tau_1$ -int $(\tau_1\tau_2$ -cl(A))) and so (1,2)- $spcl(A) \subset (1,2)$ - $spcl(\tau_1\tau_2$ - $cl(\tau_1$ - $int(\tau_1\tau_2$ - $cl(A)))) \subset (1,2)$ - $spcl(\tau_1\tau_2$ - $cl(\tau_1$ - $int(\tau_1\tau_2$ -cl((1,2))spcl(A)))) and hence (1,2)- $spcl(A) \subset \tau_1\tau_2$ - $cl(\tau_1$ - $int(\tau_1\tau_2$ -cl((1,2)-spcl(A)))). Hence (1,2)-spcl(A) is (1,2)-semi-preopen and it is (1,2)-semi-preclosed. Thus (1,2)- $spcl(A) \in (1,2)$ -SPR(X).

Sufficiency. Let (1,2)- $spcl(A) \in (1,2)$ -SPR(X). Then (1,2)-spcl(A) is (1,2)-semi-preopen and (1,2)-semi-preclosed. Therefore, $A \subset (1,2)$ - $spcl(A) \subset \tau_1\tau_2$ - $cl(\tau_1$ - $int(\tau_1\tau_2$ -cl((1,2)- $spcl(A))) \subset \tau_1\tau_2$ - $cl(\tau_1$ - $int(\tau_1\tau_2$ - $cl(\tau_1$))) = $\tau_1\tau_2$ - $cl(\tau_1$ - $int(\tau_1\tau_2$ -cl(A))). Hence A is (1,2)-semi-preopen.

(*ii*). Follows from (i) and Lemma 8. \blacksquare

Theorem 11 For a subset A of a space X, the following are equivalent.

- (*i*). $A \in (1, 2)$ -SPR(X).
- (*ii*). A = (1, 2)-spint((1, 2)-spcl(A)).
- (iii). A = (1, 2)-spcl((1, 2)-spint(A)).

Proof. $(i) \Rightarrow (ii)$. If $A \in (1,2)$ -SPR(X) then A is (1,2)-semi-preclosed and (1,2)-spcl(A) = A and therefore, (1,2)-spint((1,2)-spcl(A)) = A since A is (1,2)-semi-preopen.

 $(ii) \Rightarrow (i)$. Since (1,2)-spcl(A) is (1,2)-semi-preclosed, by Theorem 10, (1,2)-spint((1,2)-spcl $(A)) \in (1,2)$ -SPR(X) and then $A \in (1,2)$ -SPR(X).

 $(i) \Rightarrow (iii)$. Follows from the fact that A is (1, 2)-semi-preopen and (1, 2)-semi-preclosed.

 $(iii) \Rightarrow (i)$. Since (1, 2)-spint(A) is (1, 2)-semi-preopen and by Theorem 10, (1, 2)-spcl((1, 2)-spint $(A)) \in (1, 2)$ -SPR(X), then $A \in (1, 2)$ -SPR(X).

The (1, 2)-semipre- θ -interior and (1, 2)-semipre- θ -closure of a subset A of X are denoted by (1, 2)- $spint_{\theta}(A)$ and (1, 2)- $spcl_{\theta}(A)$ are defined as follows. (1, 2)- $spint_{\theta}(A) = \{x \in X : x \in U \subset (1, 2)$ - $spcl(U) \subset A$ for some (1, 2)-semipreopen set U of $X\}$ and

(1,2)- $spcl_{\theta}(A) = \{x \in X: (1,2)$ - $spcl(U) \cap A \neq \emptyset$ for every (1,2)-semi-preopen set containing $x\}$

Remark 12 Let A be a subset of X. Then

- (i). A is (1,2)-semipre- θ -open (briefly (1,2)-sp- θ -open) if and only if A = (1,2)-spint $_{\theta}(A)$ and (1,2)-semipre- θ -closed (briefly (1,2)-sp- θ -closed) if and only if A = (1,2)-spcl $_{\theta}(A)$.
- (ii). $X \setminus (1,2)$ -spint_{θ}(A) = (1,2)-spcl_{θ}(X \ A) and (1,2)-spint_{θ}(X \ A) = X \ (1,2)-spcl_{θ}(A).
- (iii). (1,2)-spint_{θ}(A) is (1,2)-sp- θ -open and (1,2)-spcl_{θ}(A) is (1,2)-sp- θ -closed.

Theorem 13 For any two subsets A, B of X, the following statements hold.

- (i). (1,2)-spint_{θ}((1,2)-spint_{θ} $(A)) \subset (1,2)$ -spint_{θ}(A).
- (ii). If $A \subset B$, then (1, 2)-spint_{θ} $(A) \subset (1, 2)$ -spint_{θ}(B).
- (iii). (1,2)-spint_{θ} $(A) \cup (1,2)$ -spint_{θ} $(B) \subset (1,2)$ -spint_{θ} $(A \cup B)$.
- (iv). (1,2)-spint_{θ} $(A \cap B) \subset (1,2)$ -spint_{θ} $(A) \cap (1,2)$ -spint_{θ}(B).

Theorem 14 For a subset A of X, the following properties hold.

- (i). If $A \in (1,2)$ -SPO(X), then (1,2)-spcl(A) = (1,2)-spcl $_{\theta}(A)$.
- (ii). $A \in (1,2)$ -SPR(X), if and only if A is (1,2)-sp- θ -open and (1,2)-sp- θ -closed.

Proof. (i). For any $A \subset X$, it is observed that (1,2)-spcl $(A) \subset (1,2)$ -spcl $_{\theta}(A)$. Let $A \in (1,2)$ -SPO(X) and $x \notin (1,2)$ -spcl(A). Then, there exists $V \in (1,2)$ -SPO(X,x) such that $V \cap A = \emptyset$. Since $A \in (1,2)$ -SPO(X), (1,2)-spcl $(V) \cap A = \emptyset$. Hence $x \notin (1,2)$ -spcl $_{\theta}(A)$. Therefore, (1,2)-spcl $_{\theta}(A) \subset (1,2)$ -spcl(A).

(*ii*). Let $A \in (1, 2)$ -SPR(X). Then A is (1, 2)-semi-preopen and (1, 2)-semi-preclosed and by (*i*), A is (1, 2)-sp- θ -closed. Since X \A is (1, 2)-semi-preopen and (1, 2)-semi-preclosed, X \A is (1, 2)-sp- θ -closed and hence A is (1, 2)-sp- θ -open.

Conversely, if A is (1, 2)-sp- θ -open, then A = (1, 2)-spint $_{\theta}(A) \subset (1, 2)$ -spint(A) and therefore, A is (1, 2)-semi-preopen. If A is (1, 2)-sp- θ -closed, then (1, 2)-spcl $(A) \subset (1, 2)$ -spcl $_{\theta}(A) = A$ and hence A is (1, 2)-semi-preclosed. Thus we obtain $A \in (1, 2)$ -SPR(X).

Theorem 15 If A_{α} is (1, 2)-sp- θ -closed in X for each $\alpha \in \Delta$, then $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is (1, 2)-sp- θ -closed.

Proof. For each $\alpha \in \Delta$, if A_{α} is (1, 2)-sp- θ -closed, then (1, 2)- $spcl_{\theta}(A_{\alpha}) = A_{\alpha}$. We have (1, 2)- $spcl_{\theta}(\bigcap_{\alpha \in \Delta} A_{\alpha}) \subset \bigcap_{\alpha \in \Delta} (1, 2)$ - $spcl_{\theta}A_{\alpha} = \bigcap_{\alpha \in \Delta} (A_{\alpha})$. It is obvious that $\bigcap_{\alpha \in \Delta} (A_{\alpha}) \subset (1, 2)$ - $spcl_{\theta}(\bigcap_{\alpha \in \Delta} A_{\alpha})$. Hence $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is (1, 2)-sp- θ -closed.

Remark 16 The union of two (1, 2)-sp- θ -closed sets is not (1, 2)-sp- θ -closed, in general as shown in the following example.

Example 17 Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X\}$ and $\tau_2 = \{\emptyset, \{b, c\}, X\}$. Then the sets $\{b\}$, $\{c\}$ are (1, 2)-sp- θ -closed but $\{b, c\}$ is not (1, 2)-sp- θ -closed.

Remark 18 If A_{α} is (1,2)-sp- θ -open in X for each $\alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is (1,2)-sp- θ -open in X.

Remark 19

- (i). Every (1,2)-semi-preregular set is (1,2)-sp- θ -open.
- (ii). Every (1,2)-sp- θ -open set is (1,2)-semi-preopen.

Remark 20 The statements (i) and (ii) of Remark 19 are not reversible as shown in the following examples.

Example 21 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X\}$ and $\tau_2 = \{\emptyset, \{b, c\}, X\}$. Then the set $\{b, c\}$ is (1, 2)-sp- θ -open but it is not (1, 2)-semi-preregular.

Example 22 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, X\}$ and $\tau_2 = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then $\{a\}$ is (1, 2)-semi-preopen but not (1, 2)-sp- θ -open.

4 Blurly (1,2)- β -Irresolute Mappings

In this section we introduce the notion of blurly (1, 2)- β -irresolute mappings and study some properties.

Definition 23 A map $f: X \to Y$ is called blurly (1, 2)- β -irresolute if for each point $x \in X$ and each $V \in (1, 2)$ -SPO(X, f(x)), there exists a $U \in (1, 2)$ -SPO(X, x) such that $f(U) \subset (1, 2)$ -spcl(V).

Remark 24 Every (1,2)- β -irresolute map is blurly (1,2)- β -irresolute but the converse is not true.

Example 25 Let X be the space as in Example 21, and let $Y = \{p, q, r\}$, $\sigma_1 = \{\emptyset, \{p\}, \{p,q\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p\}, X\}$. Define a function $f: X \to Y$ as f(a) = p, f(b) = r and f(c) = q. Then f is blurly (1, 2)- β -irresolute but not (1, 2)- β -irresolute.

Definition 26 A space X is said to be (1,2)- β - T_2 if for each pair of distinct points $x, y \in X$, there exist $U \in (1,2)$ -SPO(X,x) and $V \in (1,2)$ -SPO(X,y) such that $U \cap V = \emptyset$.

Lemma 27 A space X is (1,2)- β - T_2 if and only if for each pair of distinct points $x, y \in X$, there exist $U \in (1,2)$ -SPO(X,x) and $V \in (1,2)$ -SPO(X,y) such that (1,2)-spcl $(U) \cap (1,2)$ -spcl $(V) = \emptyset$.

Proof. Follows from Theorem 10. ■

Theorem 28 If $f: X \to Y$ and $g: Y \to Z$ are (1, 2)- β -irresolute, then the composition $g \circ f$ is (1, 2)- β -irresolute.

Theorem 29 For a function $f: X \to Y$, the following properties are equivalent.

- (i). f is blurly (1,2)- β -irresolute.
- (*ii*). $f^{-1}(V) \subset (1,2)$ -spint $(f^{-1}((1,2)$ -spcl(V))) for every $V \in (1,2)$ -SPO(Y).
- (*iii*). (1,2)-spcl $(f^{-1}(V)) \subset f^{-1}((1,2)$ -spcl(V)) for every $V \in (1,2)$ -SPO(Y).

Proof. (*i*) ⇒ (*ii*). Let *V* ∈ (1,2)-*SPO*(*Y*) and *x* ∈ *f*⁻¹(*V*). Since *f* is blurly (1,2)-β-irresolute, *f*(*U*) ⊂ (1,2)-*spcl*(*V*) for some *U* ∈ (1,2)-*SPO*(*X*, *x*). Therefore, *U* ⊂ *f*⁻¹((1,2)-*spcl*(*V*)) and *x* ∈ *U* ⊂ (1,2)-*spint* (*f*⁻¹((1,2)-*spcl*(*V*))). Hence *f*⁻¹(*V*)⊂ (1,2)-*spint*(*f*⁻¹((1,2)-*spcl*(*V*))). (*ii*) ⇒ (*iii*). Let *V* ∈ (1,2)-*SPO*(*Y*) and *x* ∉ *f*⁻¹((1,2)-*spcl*(*V*)). Then *f*(*x*) ∉ (1,2)-*spcl*(*V*). Therefore, there exists *W* ∈ (1,2)-*SPO*(*Y*, *f*(*x*)) such that *W* ∩ *V* = ∅. Since *V* ∈ (1,2)-*SPO*(*Y*), (1,2)-*spcl*(*W*) ∩ *V* = ∅ and hence (1,2)-*spint*(*f*⁻¹((1,2)-*spcl*(*W*))) ∩ *f*⁻¹(*V*) = ∅. Then by (ii), we have *x* ∈ *f*⁻¹(*W*) ⊂ (1,2)-*spint*(*f*⁻¹((1,2)-*spcl*(*W*))) ∈ (1,2)-*SPO*(*X*). Therefore, *x* ∉ (1,2)-*spcl*(*f*⁻¹(*V*)). Hence, (1,2)-*spcl*(*f*⁻¹(*V*)) ⊂ *f*⁻¹((1,2)-*spcl*(*V*)).

 $(iii) \Rightarrow (i)$. Let $x \in X$ and $V \in (1,2)$ -SPO(Y, f(x)). Then by Theorem 10, (1,2)- $spcl(V) \in (1,2)$ -SPR(Y) and $x \notin f^{-1}((1,2)$ - $spcl(Y \setminus (1,2)$ -spcl(V))). Since $Y \setminus (1,2)$ - $spcl(V) \in (1,2)$ -SPO(Y), by (iii), we have $x \notin (1,2)$ - $spcl(f^{-1}(Y \setminus (1,2)$ -spcl(V))). Hence there exists $U \in (1,2)$ -SPO(X,x) such that $U \cap f^{-1}(Y \setminus (1,2)$ - $spcl(V)) = \emptyset$. Therefore, $f(U) \cap (Y \setminus (1,2)$ - $spcl(V)) = \emptyset$ and so $f(U) \subset (1,2)$ -spcl(V). ■

Theorem 30 If $f: X \to Y$ is (1,2)- β -irresolute and V is (1,2)-sp- θ -open in Y, then $f^{-1}(V)$ is (1,2)-sp- θ -open in X.

Proof. Let V be (1,2)-sp- θ -open in Y and $x \in f^{-1}(V)$. Then there exists $W \in (1,2)$ -SPO(Y) such that $f(x) \in W \subset (1,2)$ -spcl(W) $\subset V$. Since f is (1,2)- β -irresolute, $f^{-1}(W) \in (1,2)$ -SPO(X) and (1,2)-spcl $(f^{-1}(W)) \subset f^{-1}((1,2)$ -spcl(W)). Therefore, we have $x \in f^{-1}(W) \subset (1,2)$ -spcl $(f^{-1}(W)) \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is (1,2)-sp- θ -open in X.

Theorem 31 For a function $f: X \to Y$, the following are equivalent.

- (i). f is blurly (1,2)- β -irresolute.
- (ii). (1,2)-spcl $(f^{-1}(B)) \subset f^{-1}((1,2)$ -spcl $_{\theta}(B))$ for every subset B of Y.
- (iii). f((1,2)-spcl $(A)) \subset (1,2)$ -spcl $_{\theta}(f(A))$ for every subset A of X.
- (iv). $f^{-1}(F) \in (1,2)$ -SPC(X) for every (1,2)-sp- θ -closed subset F of Y.
- (v). $f^{-1}(V) \in (1,2)$ -SPO(X) for every (1,2)-sp- θ -open set V of Y.

Proof. $(i) \Rightarrow (ii)$. Let B be any subset of Y and $x \notin f^{-1}((1,2)-spcl_{\theta}(B))$. Then $f(x) \notin (1,2)-spcl_{\theta}(B)$ and there exists $V \in (1,2)$ -

SPO(Y, f(x)) such that (1, 2)- $spcl(V) \cap B = \emptyset$. Since f is blurly (1, 2)- β -irresolute, there exists $U \in (1, 2)$ -SPO(X, x) such that $f(U) \subset (1, 2)$ -spcl(V). Hence $f(U) \cap B = \emptyset$ and $U \cap f^{-1}(B) = \emptyset$. Thus we obtain $x \notin (1, 2)$ - $spcl(f^{-1}(B))$.

 $(ii) \Rightarrow (iii)$. Let A be any subset of X. By (ii), (1,2)-spcl $(A) \subset (1,2)$ -spcl $(f^{-1}(f(A))) \subset f^{-1}((1,2)$ -spcl $_{\theta}(f(A)))$ and so f((1,2)-spcl $(A)) \subset (1,2)$ -spcl $_{\theta}f((A))$.

 $(iii) \Rightarrow (iv).$ Let F be (1,2)-sp- θ -closed in Y. Then, by (iii), f((1,2)- $spcl(f^{-1}(F))) \subset (1,2)$ - $spcl_{\theta}(f(f^{-1}(F))) \subset (1,2)$ - $spcl_{\theta}(F) = F$. Therefore, (1,2)- $spcl(f^{-1}(F)) \subset f^{-1}(F)$ and therefore, (1,2)- $spcl(f^{-1}(F)) = f^{-1}(F)$.

 $(iv) \Rightarrow (v)$. Obvious.

 $(v) \Rightarrow (i)$. Let $x \in X$ and $V \in (1,2)$ -SPO(Y, f(x)). By Theorem 10 and Theorem 14, (1,2)-spcl(V) is (1,2)- sp_{θ} -open in Y. Set $U = f^{-1}((1,2)$ spcl(V)). Then by our assumption, $U \in (1,2)$ -SPO(X,x) and $f(U) \subset (1,2)$ spcl(V). hence f is blurly (1,2)- β -irresolute.

Theorem 32 For a function $f: X \to Y$ the following are equivalent.

- (i). f is blurly (1,2)- β -irresolute.
- (ii). For each $x \in X$ and each $V \in (1,2)$ -SPO(Y, f(x)), there exists $U \in (1,2)$ -SPO(X,x) such that f((1,2)-spcl $(U)) \subset (1,2)$ -spcl(V).
- (*iii*). $f^{-1}(F) \in (1,2)$ -SPR(X) for every $F \in (1,2)$ -SPR(Y).

Proof. $(i) \Rightarrow (ii)$. Let $x \in X$ and $V \in (1,2)$ -SPO(Y, f(x)). Then by Theorem 10 and Theorem 14, (1,2)-spcl(V) is (1,2)-sp- θ -open and (1,2)sp- θ -closed. If we let $U = f^{-1}((1,2)$ -spcl(V)) by Theorem 29, $U \in (1,2)$ -SPR(X). Thus U is (1,2)-semi-preopen and (1,2)-semi-preclosed and therefore, f((1,2)- $spcl(U)) \subset (1,2)$ -spcl(V).

 $(ii) \Rightarrow (iii)$. Let $F \in (1,2)$ -SPR(Y) and $x \in f^{-1}(F)$. Then $f(x) \in F$ and hence by our assumption, there exists $U \in (1,2)$ -SPO(X,x) such that f((1,2)- $spcl(U)) \subset F$. Thus we have $x \in U \subset (1,2)$ - $spcl(U) \subset f^{-1}(F)$ and hence $f^{-1}(F) \in (1,2)$ -SPO(X). Now $Y \setminus F \in (1,2)$ -SPR(Y), $f^{-1}(Y \setminus F)$ $= X \setminus f^{-1}(F) \in (1,2)$ -SPR(X). Thus $f^{-1}(F)$ is (1,2)-semi-preclosed and hence $f^{-1}(F) \in (1, 2)$ -*SPR*(X).

 $(iii) \Rightarrow (i)$. Let $x \in X$ and $V \in (1,2)$ -SPO(Y, f(x)). Then (1,2)- $spcl(V) \in (1,2)$ -SPR(Y, f(x)) by Theorem 10, and $f^{-1}((1,2)$ - $spcl(V)) \in (1,2)$ SPR(X,x). If we let $U = f^{-1}(1,2)$ -spcl(V), then $U \in (1,2)$ -SPO(X,x) and $f(U) \subset (1,2)$ -spcl(V). Therefore, f is blurly (1,2)- β -irresolute. ■

Theorem 33 For a function $f: X \to Y$ the following are equivalent.

- (i). f is blurly (1,2)- β -irresolute.
- (*ii*). $f^{-1}(V) \subset (1,2)$ -spint_{θ} $(f^{-1}((1,2)$ -spcl_{θ}(V))) for every $V \in (1,2)$ -SPO(Y).
- (iii). (1,2)-spcl_{θ} $(f^{-1}(V)) \subset f^{-1}((1,2)$ -spcl_{θ}(V)) for every $V \in (1,2)$ -SPO(Y).

Proof. Proof is similar to that of Theorem 29.

Theorem 34 For a function $f: X \to Y$ the following are equivalent.

- (i). f is blurly (1,2)- β -irresolute.
- (ii). (1,2)-spcl_{θ} $(f^{-1}(B)) \subset f^{-1}((1,2)$ -spcl_{θ}(B)) for every subset B of Y.
- (iii). $f((1,2)\operatorname{-spcl}_{\theta}(A)) \subset (1,2)\operatorname{-spcl}_{\theta}(f(A))$ for every subset A of X.
- (iv). $f^{-1}(F)$ is (1,2)-sp- θ -closed for every (1,2)-sp- θ -closed subset F of Y.
- (v). $f^{-1}(V)$ is (1,2)-sp- θ -open for every (1,2)-sp- θ -open set V of Y.

Proof. Proof is similar to that of Theorem 31.

Definition 35 A space X is said to be (1,2)-semi-preregular if for each $F \in (1,2)$ -SPC(X) and each $x \notin F$, there exist disjoint (1,2)-semi-preopen sets U and V such that $x \in U$ and $F \subset V$.

Lemma 36 For a space X the following properties are equivalent.

- (i). X is (1,2)-semi-preregular.
- (ii). For each $U \in (1,2)$ -SPO(X) and each $x \in U$, there exists $V \in (1,2)$ -SPO(X) such that $x \in V \subset (1,2)$ -spcl(V) $\subset U$.

(iii). For each $U \in (1,2)$ -SPO(X) and each $x \in U$, there exists $V \in (1,2)$ -SPR(X) such that $x \in V \subset U$.

Proof. Follows from Theorem 10. ■

Theorem 37 Let Y be an (1,2)-semi-preregular space. Then a function $f: X \to Y$ is blurly (1,2)- β -irresolute if and only if it is (1,2)- β -irresolute.

Proof. Let f be blurly (1, 2)- β -irresolute and V be (1, 2)-semi-preopen in Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. Therefore, by Lemma 36, there exists $W \in (1, 2)$ -SPO(Y) such that $f(x) \in W \subset (1, 2)$ - $spcl(W) \subset V$. Since f is blurly (1, 2)- β -irresolute, there exists $U \in (1, 2)$ -SPO(X, x) such that f(U) $\subset (1, 2)$ -spcl(W). Thus we have $x \in U \subset f^{-1}(V)$ and $f^{-1}(V) \in (1, 2)$ -SPO(X). Hence f is (1, 2)- β -irresolute.

The converse follows from Remark 24.

Theorem 38 If Y is (1,2)- β - T_2 and $f: X \to Y$ is a blurly (1,2)- β -irresolute injective map, then X is (1,2)- β - T_2 .

Proof. Let x, y be two distinct points of X. Since f is injective, $f(x) \neq f(y)$. Since Y is (1,2)- β - T_2 , by Lemma 27, (1,2)- $spcl(U) \cap (1,2)$ - $spcl(V) = \emptyset$. Since f is blurly (1,2)- β -irresolute, there exist $P \in (1,2)$ -SPO(X,x) and $Q \in (1,2)$ -SPO(X,y) such that $f(P) \subset (1,2)$ -spcl(V) and $f(Q) \subset (1,2)$ -spcl(W). Therefore, $P \cap Q = \emptyset$. Hence X is (1,2)- β - T_2 .

5 Vividly (1, 2)- β -Irresolute Mappings

In this section we introduce vividly (1, 2)- β -irresolute mappings.

Definition 39 A map $f: X \to Y$ is called vividly (1,2)- β -irresolute if for each point $x \in X$ and each $V \in (1,2)$ -SPO(X, f(x)), there exists a $U \in (1,2)$ -SPO(X,x) such that f((1,2)-spcl $(U)) \subset V$.

Remark 40 Every vividly (1,2)- β -irresolute map is (1,2)- β -irresolute but the converse is not true as shown in the following example.

Example 41 Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, X\}$ and $\tau_2 = \{\emptyset, \{b\}, X\}$ and $Y = \{p, q, r\}, \sigma_1 = \{\emptyset, \{p, q\}, Y\}$ and $\sigma_2 = \{\emptyset, \{p\}, Y\}$. Define a function $f: X \to Y$ as f(a) = p, f(b) = q, f(c) = r. Then the function is (1, 2)- β -irresolute but it is not vividly (1, 2)- β -irresolute since for $a \in X$, $f(a) = p \in \{p\}$ and for any $U \in (1, 2)$ -SPO(X, a) (1, 2)-spcl(U) = $X \not\subset \{p\}$.

Remark 42 ¿From the above discussions we obtain

vividly (1,2)- β -irresolute $\Rightarrow (1,2)$ - β -irresolute \Rightarrow blurly (1,2)- β -irresolute and none of them is reversible.

Theorem 43 For a function $f: X \to Y$ the following are equivalent.

- (i). f is vividly (1,2)- β -irresolute.
- (ii). For each $x \in X$ and each $V \in (1,2)$ -SPO(Y, f(x)), there exists $U \in (1,2)$ -SPO(X,x) such that f((1,2)-spcl $_{\theta}(U)) \subset V$.
- (iii). For each $x \in X$ and each $V \in (1,2)$ -SPO(Y, f(x)), there exists $U \in (1,2)$ -SPR(X,x) such that $f(U) \subset V$.
- (iv). For each $x \in X$ and each $V \in (1,2)$ -SPO(Y, f(x)), there exists an (1,2)-sp- θ -open set U in X containing x such that $f(U) \subset V$.
- (v). $f^{-1}(V)$ is (1,2)-sp- θ -open for every $V \in (1,2)$ -SPO(Y).
- (vi). $f^{-1}(F)$ is (1,2)-sp- θ -closed for every $F \in (1,2)$ -SPC(Y).
- (vii). f((1,2)-spcl $_{\theta}(A)) \subset (1,2)$ -spcl(f(A)) for every subset A of X.
- (viii). (1,2)-spcl_{θ} $(f^{-1}(B)) \subset f^{-1}((1,2)$ -spcl(B)) for every subset B of Y.

Proof. $(i) \Rightarrow (ii)$. Follows from Theorem 14.

- $(ii) \Rightarrow (iii)$. Follows from Theorem 10.
- $(iii) \Rightarrow (iv)$. Follows from Theorem 10.

 $(iv) \Rightarrow (v)$. Let $V \in (1,2)$ -SPO(Y). If $x \in f^{-1}(V)$, then $f(x) \in V$ and there exists an (1,2)-sp- θ -open set U in X containing x such that $f(U) \subset V$. Therefore, $x \in U \subset f^{-1}(V)$ and hence $f^{-1}(V)$ is the union of (1,2)-sp- θ open sets. Thus $f^{-1}(V)$ is (1,2)-sp- θ -open in X since the union of (1,2)-sp- θ -open sets is (1,2)-sp- θ -open.

 $(v) \Rightarrow (vi)$. Obvious.

 $(vi) \Rightarrow (vii). \text{ Let } A \subset X. \text{Since } (1, 2) \cdot spcl(f(A)) \text{ is } (1, 2) \cdot semi-preclosed in Y$ by $(vi), f^{-1}((1, 2) \cdot spcl(f(A))) \text{ is } (1, 2) \cdot sp-\theta \cdot \text{closed in } X \text{ and } (1, 2) \cdot spcl_{\theta}(A)$ $\subset (1, 2) \cdot spcl_{\theta} \quad f^{-1}(f(A)) \quad \subset (1, 2) \cdot spcl_{\theta}(f^{-1}((1, 2) \cdot spcl(f(A))))$ $= f^{-1}((1, 2) \cdot spcl(f(A))). \text{ Therefore, } f((1, 2) \cdot spcl_{\theta}(A)) \subset (1, 2) \cdot spcl(f(A)).$ $(vii) \Rightarrow (viii). \text{ Let } B \subset Y. \text{ Then } f((1, 2) \cdot spcl_{\theta}(f^{-1}(B)))$ $\subset (1, 2) \cdot spcl(f(f^{-1}(B))) \subset (1, 2) \cdot spcl(B) \text{ and hence } (1, 2) \cdot spcl_{\theta}(f^{-1}(B))$ $\subset f^{-1}((1, 2) \cdot spcl(B)).$

 $(viii) \Rightarrow (i)$. Let $x \in X$ and $V \in (1, 2)$ -SPO(Y, f(x)). By (viii), (1, 2)- $spcl_{\theta}(f^{-1}(Y \setminus V)) \subset f^{-1}((1, 2)$ - $spcl(Y \setminus V)) = f^{-1}(Y \setminus V)$. Therefore, $f^{-1}(Y \setminus V)$ is

(1,2)-sp- θ -closed in X and $f^{-1}(V)$ is (1,2)-sp- θ -open in X and it contains x. Hence there exists $U \in (1,2)$ -SPO(X,x) such that (1,2)-spcl $(U) \subset f^{-1}(V)$ and f((1,2)-spcl $(U)) \subset V$.

Theorem 44 Every (1,2)- β -irresolute map $f: X \to Y$ is vividly (1,2)- β -irresolute if and only if X is (1,2)-semi-preregular.

Proof. Necessity Let $f: X \to Y$ be the identity function. Then f is (1,2)- β -irresolute and by the hypothesis, it is vividly (1,2)- β -irresolute. If $x \in U \in (1,2)$ -SPO(X), then $f(x) = x \in U$, there exists $V \in (1,2)$ -SPO(X,x) such that f((1,2)- $spcl(V)) \subset U$. Therefore, we have $x \in V \subset (1,2)$ - $spcl(V) \subset U$. Hence by Lemma 36, X is (1,2)-semi-preregular. Sufficiency.If $x \in X$ and $V \in (1,2)$ -SPO(X, f(x)), then $f^{-1}(V)$ is (1,2)-semi-preopen in X containing x. Since X is (1,2)-semi-preregular, there exists $U \in (1,2)$ -SPO(X) such that $x \in U \subset (1,2)$ spcl $(U) \subset f^{-1}(V)$. Therefore, f(1,2)- $spcl(U) \subset V$, f is vividly (1,2)- β -irresolute.

Theorem 45 Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Then the following properties hold.

- (i). If f is vividly (1,2)-β-irresolute and g is (1,2)-β-irresolute, then g o f is vividly (1,2)-β-irresolute.
- (ii). If f is (1,2)- β -irresolute and g is vividly (1,2)- β -irresolute, then $g \circ f$ is vividly (1,2)- β -irresolute.

Proof. (i). Obvious.

(*ii*). Follows from Theorem 43 and Theorem 29. \blacksquare

References

- Abd. El-Monsef. M.E, El Deeb. S.N. and Mahmoud. R.A, β-open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] Andrijevic. D, Semi-pre open sets Mat. Vesnik, **38** (1986), no.1, 24-32.
- [3] Lellis Thivagar. M, Generalization of pairwise α-continuous functions, Pure and Applied Mathematika Sciences, Vol.XXXIII, No. 1-2, (1991), 55-63.

- [4] Mahmoud. R. A and Monsef. M. E, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27 (1990), 285-296.
- [5] Navalagi. G. B, Lellis Thivagar. M and Raja Rajeswari. R, Generalized Semi-preclosed sets in Bitopological spacesMathematical Forum, Vol. XXVII (2004-2005).
- [6] Noiri. T, Weak and Strong forms of β-irresolute functions, Acta Math. Hungar. 99(4)(2002), 315-328.
- [7] Raja Rajewari. R and Lellis Thivagar. M, On Extension of Semi-pre open sets in Bitopological Spaces, Proc. of the National Conference in Pure and Applied Mathematics, (2005), 28-32.

S. Athisaya Ponmani:

Department of Mathematics, Jayaraj Annapackiam College for Women, Periyakulam, Theni (Dt.)-625601, Tamilnadu, India. *E-mail*: athisayaponmani@yahoo.co.in

R. Raja Rajeswari:

Department of Mathematics, Sri Parasakthi College, Courtalam, Tirunelveli (Dt.) -627802,Tamilnadu,India. *E-mail*: raji_arul2000@yahoo.co.in

M. Lellis Thivagar: Department of Mathematics, Arul Anandar College, Karumathur, Madurai (Dt.)-625514, Tamilnadu, India. *E-mail*: mlthivagar@yahoo.co.in

Erdal Ekici:

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey. *E-mail*: eekici@comu.edu.tr