Miroslav M. Ristić
LIST OF PUBLICATIONS


    Books

  1. B. Č. Popović, M. M. Ristić, Statistics in psychology, Mrlješ, Beograd, 2001, (in Serbian).

  2. M. M. Ristić, B. Č. Popović, M. S. Djordjević, Statistics for students of geography, University of Niš, Faculty of Sciences and Mathematics, 2006, (in Serbian).


Accepted (4)
[46]  A. S. Nastić, M. M. Ristić, A. V. Miletić Ilić, A geometric time series model with an alternative dependent Bernoulli counting series, Communications in Statistics - Theory and Methods, To Appear.
[45]  M. M. Ristić, D. Kundu, Marshall-Olkin generalized exponential distribution, Metron, To Appear.
[44]  A. S. Nastić, M. M. Ristić, M. S. Djordjević, An INAR model with discrete Laplace marginal distributions, Brazilian Journal of Probability and Statistics, To Appear.
[43]  A. S. Nastić, M. M. Ristić, P. M. Popović, Estimation in a Bivariate Integer-Valued Autoregressive Process, Communications in Statistics - Theory and Methods, To Appear.
2015 (1)
[42]  M. M. Ristić, B. V. Popović, S. Nadarajah (2015) Libby and Novick's generalized beta exponential distribution, Journal of Statistical Computation and Simulation, 85(4), 740-761.
2014 (2)
[41]  M. M. Ristić, S. Nadarajah (2014) A new lifetime distribution, Journal of Statistical Computation and Simulation, 84(1), 135-150.
2013 (7)
[40]  H. S. Bakouch, M. M. Ristić, E. Sandhya, S. Satheesh (2013) Random products and product auto-regression, Filomat 27(7), 1197-1203.
[39]  E. Krishna, K. K. Jose, T. Alice, M. M. Ristić (2013) Marshall-Olkin Frechet Distribution, Communications in Statistics – Theory and Methods, 42 (22), 4091-4107.
[38]  M. M. Ristić, A. S. Nastić, A. V. Miletić Ilić (2013) A geometric time series model with dependent Bernoulli counting series, Journal of Time Series Analysis, 34 (4), 466–476.
[37]  S. Nadarajah, B. V. Popović, M. M. Ristić (2013) Compounding: An R package for computing continuous distributions obtained by compounding a continuous and a discrete distribution, Computational Statistics, 28 (3), 977-992.
[36]  S. Nadarajah, K. Jayakumar, M. M. Ristić (2013) A new family of lifetime models, Journal of Statistical Computation and Simulation, 83 (8), 1389-1404.
[35]  B. V. Popović, S. Nadarajah, M. M. Ristić (2013) A new non-linear AR(1) time series model having approximate beta marginals, Metrika, 76, 71-92.
[34]  E. Krishna, K. K. Jose, M. M. Ristić (2013) Applications of Marshall-Olkin Frechet distribution, Communications in Statistics – Simulation and Computation, 42(1), 76-89.
2012 (7)
[33]  M. M. Ristić, A. S. Nastić (2012) A mixed INAR(p) model, Journal of Time Series Analysis, 33, 903–915.
[32]  M. M. Ristić, N. Balakrishnan (2012) The gamma-exponentiated exponential distribution, Journal of Statistical Computation and Simulation, 82(8), 1191-1206.
[31]  H. S. Bakouch, M. M. Ristić, A. Asgharzadeh, L. Esmaily, B. M. Al-Zahrani (2012) An exponentiated exponential binomial distribution with application, Statistics and Probability Letters, 82, 1067–1081.
[30]  A. S. Nastić, M. M. Ristić (2012) Some geometric mixed integer-valued autoregressive (INAR) models, Statistics and Probability Letters, 82(4), 805-811.
[29]  A. S. Nastić, M. M. Ristić, H. S. Bakouch (2012) A combined geometric INAR(p) model based on negative binomial thinning, Mathematical and Computer Modelling, 55(5-6), 1665–1672.
[28]  M. M. Ristić, A. S. Nastić, K. Jayakumar, H. S. Bakouch (2012) A bivariate INAR(1) time series model with geometric marginals, Applied Mathematics Letters, 25(3), 481–485.
[27]  M. M. Ristić, A. S. Nastić, H. S. Bakouch (2012) Estimation in an integer-valued autoregressive process with negative binomial marginals (NBINAR(1)), Communications in Statistics - Theory and Methods 41:4, 606-618.
2011 (2)
[26]  B. V. Popović, M. M. Ristić, S. Nadarajah (2011) On a Generalized Mixed AR(1) Time Series Model, Markov Processes Related Fields, 17, 637–650.
[25]  K. K. Jose, M. M. Ristić, Ancy Joseph (2011) Marshall–Olkin bivariate Weibull distributions and processes, Statistical Papers, 52, 789-798.
2010 (3)
[24]  K. K. Jose, S. R. Naik, M. M. Ristić (2010) Marshall–Olkin q-Weibull distribution and max–min processes, Statistical Papers, 51(4), 837-851.
[23]  H. S. Bakouch, M. M. Ristić (2010) Zero Truncated Poisson Integer Valued AR(1) Model, Metrika 72(2), 265-280.
[22]  K. Jayakumar, M. M. Ristić, D. A. Mundassery (2010) A generalization to bivariate Mittag-Leffler and bivariate discrete Mittag-Leffler autoregressive processes, Communications in Statistics - Theory and Methods 39(6), 942-955.
2009 (3)
[21]  K. K. Jose, J. Ancy, M. M. Ristić (2009) A Marshall-Olkin beta distribution and minification process, Journal of Probability and Statistical Science 7(2), 173-186.
[20]  M. M. Ristić, H. S. Bakouch, A. S. Nastić (2009) A New Geometric First-Order Integer-Valued Autoregressive (NGINAR(1)) Process, Journal of Statistical Planning and Inference 139, 2218-2226.
[19]  H. S. Bakouch, M. M. Ristić (2009) A bivariate beta-gamma autoregressive process (BVBGAR(1)), Communications in Statistics - Theory and Methods 38:7, 1113—1131.
2008 (2)
[18]  M. M. Ristić, B. Č, Popović, A. S. Nastić, M. Djordjević (2008) A bivariate Marshall and Olkin exponential minification process, Filomat 22:1, 67-75.
[17]  M. M. Ristić (2008) A generalized semi-Pareto minification process, Statistical Papers 49, 343–351.
2007 (1)
[16]  M. M. Ristić, K. K. Jose, J. Ancy (2007) A Marshall-Olkin gamma distribution and minification process, STARS: Int. Journal (Sciences) Vol.1, No.2, 107-117.
2006 (2)
[15]  B. Č. Popović, M. M. Ristić (2006) Consistent estimating in UAR models, Facta Universitatis (Niš), Ser. Math. Inform. 21, 57-63.
[14]  M. M. Ristić (2006) Stationary bivariate minification processes, Statistics and Probability Letters 76, 439-445.
2005 (1)
[13]  M. M. Ristić (2005) A Beta-Gamma Autoregressive Process of the Second Order (BGAR(2)), Statistics and Probability Letters 73, 403-410.
2004 (1)
[12]  M. M. Ristić, B. Č. Popović (2004) Parameter estimation for uniform maximum process, Novi Sad Journal of Mathematics Vol. 34, No. 1, 47-51.
2003 (1)
[11]  M. M. Ristić, B. Č. Popović (2003) A bivariate uniform autoregressive process, Annals of the Institute of Statistical Mathematics 55, No. 4, 797-802.
2002 (1)
[10]  M. M. Ristić, B. Č. Popović (2002) The uniform autoregressive process of the second order (UAR(2)), Statistics and Probability Letters 57, 113-119.
2001 (3)
[9]  B. Č. Popović, M. M. Ristić (2001) Matrix representation of BUAR(1), Filomat 15, 233-238.
[8]  M. M. Ristić, B. Č. Popović (2001) Estimating of parameters: NUAR(1) process, Publications de L'Institute Mathematique 70(84), 63-68.
[7]  M. M. Ristić, B. Č. Popović (2001) Estimation in uniform minification processes and their transformations, Matematicki Vesnik Vol. 53, No. 1-2, 29-35.
2000 (3)
[6]  M. M. Ristić, B. Č. Popović (2000) Parameter estimation for uniform autoregressive processes, Novi Sad J. Math. 30, Number 1, 89-95.
[5]  M. M. Ristić, B. Č. Popović (2000) A new uniform AR(1) time series model (NUAR(1)), Publications de L'Institut Mathematique 68 (82), 145-152.
[4]  B. Č. Popović, M. M. Ristić (2000) GAREX(2) models: Existence and Possibilities, Mathematica Balkanica 14, Fasc. 1-2, 145-160.
1999 (2)
[3]  B. Č. Popović, M. M. Ristić (1999) Maximum likelihood estimation for the FAREX(1) model, Filomat (Niš) 13, 149-155.
[2]  P. Stanimirović, M. B. Tasić, M. M. Ristić (1999) Symbolic implementation of the Hooke-Jeeves method, YUJOR 9, Number 2, 285-300.
1997 (1)
[1]  P. Stanimirović, M. M. Ristić (1997) Representations of (3), (4), (1,3), (1,4) inverses, Mathematica Moravica 1, 85-92.